It's All Angles

Geometry Level pending

In A B C \triangle{ABC} , m A B C m\angle{ABC} is twice m B A C m\angle{BAC} , A C = m a , A B = ( m 1 ) a \overline{AC} = ma, \:\ \overline{AB} = (m - 1)a and B C = ( m 2 ) a \overline{BC} = (m - 2)a , M 2 , M 1 M_{2}, M_{1} and M 3 M_{3} are midpoints of A C , A B \overline{AC}, \overline{AB} and B C \overline{BC} respectively and point P P is the centroid of A B C \triangle{ABC} .

Let P Q \overline{PQ} be the height of the tetrahedron above.

Find the m Q M 2 P = θ m\angle{QM_{2}P} = \theta (in degrees) that minimizes the triangular face A Q C AQC when the volume is held constant.

Express the result to six decimal places.


The answer is 54.735610.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Oct 25, 2018

Using the law of sines sin ( 2 β ) sin ( β ) = m m 2 cos ( β ) = m 2 ( m 2 ) \implies \dfrac{\sin(2\beta)}{\sin(\beta)} = \dfrac{m}{m - 2} \implies \cos(\beta) = \dfrac{m}{2(m - 2)}

Using the law of cosines with included B A C m 2 4 m + 4 = m 2 2 m + 1 + m 2 m 2 ( m 1 ) m 2 m 2 7 m + 6 = 0 \angle{BAC} \implies m^2 - 4m + 4 = m^2 - 2m + 1 + m^2 - \dfrac{m^2(m - 1)}{m - 2} \implies m^2 - 7m + 6 = 0 \implies ( m 6 ) ( m 1 ) = 0 m 1 m = 6 A C = 6 a , A B = 5 a (m - 6)(m - 1) = 0 \:\ m \neq 1 \implies m = 6 \implies \overline{AC} = 6a, \:\ \overline{AB} = 5a and B C = 4 a \overline{BC} = 4a

cos ( β ) = 3 4 B D = 5 a 7 4 a \cos(\beta) = \dfrac{3}{4} \implies \overline{BD} = \dfrac{5a\sqrt{7}}{4}a and A D = 15 a 4 AD = \dfrac{15a}{4}

Let A : ( 0 , 0 ) , C ( 6 a , 0 ) A:(0,0), \:\ C(6a,0) and Point B : ( 15 a 4 , 5 a 7 4 a ) B:( \dfrac{15a}{4}, \dfrac{5a\sqrt{7}}{4}a)

\implies the midpoints of the sides are M 2 : ( 3 a , 0 ) , M 1 : ( 15 8 a , 5 7 8 a ) , M 3 ( 39 8 a , 5 7 8 a ) M_{2}:(3a,0), M_{1}:(\dfrac{15}{8}a, \dfrac{5\sqrt{7}}{8}a), \:\ M_{3}(\dfrac{39}{8}a,\dfrac{5\sqrt{7}}{8}a)

m C M 1 = 5 7 33 y = 5 7 33 ( x 6 a ) m_{CM_{1}} = -\dfrac{5\sqrt{7}}{33} \implies y = -\dfrac{5\sqrt{7}}{33}(x - 6a)

and,

m A M 3 = 5 7 39 y = 5 7 39 x m_{AM_{3}} = \dfrac{5\sqrt{7}}{39} \implies y = \dfrac{5\sqrt{7}}{39}x

Solving the two equations above x = 13 4 a , y = 5 7 12 a \implies x = \dfrac{13}{4}a, \:\ y = \dfrac{5\sqrt{7}}{12}a \implies

The centroid P ( 13 4 a , 5 7 12 a ) P(\dfrac{13}{4}a,\dfrac{5\sqrt{7}}{12}a) .and P M 2 = 46 6 a \overline{PM_{2}} = \dfrac{\sqrt{46}}{6}a

Note: You could also have found the centroid of the triangle by taking an average of the three vertices.

A A B C = 15 7 4 a 2 A_{\triangle{ABC}} = \dfrac{15\sqrt{7}}{4}a^2

Letting Q P = h Q M 2 = 36 h 2 + 46 a 2 6 \overline{QP} = h \implies \overline{QM_{2}} = \dfrac{\sqrt{36h^2 + 46a^2}}{6} \implies A = A A Q C = a 2 36 h 2 + 46 a 2 A = A_{\triangle{AQC}} = \dfrac{a}{2}\sqrt{36h^2 + 46a^2}

The volume V = 5 7 4 a 2 h = k h = 4 k 5 7 a 2 V = \dfrac{5\sqrt{7}}{4} a^2 h = k \implies h = \dfrac{4k}{5\sqrt{7} a^2} \implies A ( a ) = 576 k 2 + 8050 a 6 10 7 a d A d a = 8050 a 6 288 k 2 5 7 576 k 2 + 8050 a 6 a 2 = 0 a = ( 12 k 5 161 ) 1 3 A(a) = \dfrac{\sqrt{576k^2 + 8050a^6}}{10\sqrt{7} a} \implies \dfrac{dA}{da} = \dfrac{8050a^6 - 288k^2}{5\sqrt{7}\sqrt{576k^2 + 8050a^6}} a^2 = 0 \implies a = (\dfrac{12k}{5\sqrt{161}})^{\frac{1}{3}} h = ( 92 k 45 7 ) 1 3 \implies h = (\dfrac{92k}{45\sqrt{7}})^{\frac{1}{3}}

Let θ = m Q M 2 P tan ( θ ) = 6 h 46 a = 2 θ 54.73561 0 \theta = m\angle{QM_{2}P} \implies \tan(\theta) = \dfrac{6h}{\sqrt{46}a} = \sqrt{2} \implies \theta \approx \boxed{54.735610^\circ} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...