It's All Areas

Geometry Level 4

Let the diagram above be extended to a regular n n -gon and A j A_{j} , where ( 1 j n ) (1 \leq j \leq n) , be the area of one of the red triangles.

If lim n j = 1 n A j = π ( a 2 + 2 a b 12 b 2 ) \displaystyle \lim_{n \rightarrow \infty} \sum_{j = 1}^{n} A_{j} = \pi(a^2 + 2ab - 12b^2) , find a b \dfrac{a}{b} .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rocco Dalto
Jan 10, 2021

Let m ( A C B ) = ( n 2 ) 180 n m(\angle{ACB}) = \dfrac{(n - 2)180}{n} be one of the interior angles of the larger n g o n n-gon .

sin ( ( n 2 ) 180 n ) = sin ( 180 360 n ) = sin ( 360 n ) = sin ( 2 π n ) \sin(\dfrac{(n - 2)180}{n}) = \sin(180 - \dfrac{360}{n}) = \sin(\dfrac{360}{n}) = \sin(\dfrac{2\pi}{n}) .

Using the law of sines c sin ( 2 π n ) = a sin ( α ) \implies \dfrac{c}{\sin(\dfrac{2\pi}{n})} = \dfrac{a}{\sin(\alpha)} \implies sin ( α ) = a sin ( 2 π n ) c h = a b sin ( 2 π n ) c \sin(\alpha) = \dfrac{a\sin(\dfrac{2\pi}{n})}{c} \implies h^{*} = \dfrac{ab\sin(\dfrac{2\pi}{n})}{c} \implies j = 1 n A j = n 1 2 ( c ) ( a b sin ( 2 π n ) c ) = n 2 a b sin ( 2 π n ) \sum_{j = 1}^{n} A_{j} = n\dfrac{1}{2}(c)(\dfrac{ab\sin(\dfrac{2\pi}{n})}{c}) = \dfrac{n}{2} ab\sin(\dfrac{2\pi}{n}) .

Using the inequality cos ( x ) < sin ( x ) x < 1 π cos ( π n ) < n 2 sin ( 2 π n ) < π lim n j = 1 n A j = π a b \cos(x) < \dfrac{\sin(x)}{x} < 1 \implies \pi\cos(\dfrac{\pi}{n}) < \dfrac{n}{2}\sin(\dfrac{2\pi}{n}) < \pi \implies \lim_{n \rightarrow \infty} \sum_{j = 1}^{n} A_{j} = \boxed{\pi ab} j = 1 n A j \implies \sum_{j = 1}^{n} A_{j} converges to the area of an ellipse.

lim n j = 1 n A j = π a b = π ( a 2 + 2 a b 12 b 2 ) a 2 + a b 12 b 2 = 0 ( a 3 b ) ( a + 4 b ) = 0 \lim_{n \rightarrow \infty} \sum_{j = 1}^{n} A_{j} = \pi ab = \pi(a^2 + 2ab - 12b^2) \implies a^2 + ab - 12b^2 = 0 \implies (a - 3b)(a + 4b) = 0 since a , b > 0 a b = 3 a,b > 0 \implies \dfrac{a}{b} = \boxed{3} .

Chris Lewis
Jan 11, 2021

In the triangle A B C ABC , C = n 2 n π = π 2 π n \angle C=\frac{n-2}{n} \pi = \pi-\frac{2\pi}{n} .

The area of one of the red triangles is therefore A j = 1 2 a b sin C = 1 2 a b sin ( π 2 π n ) = 1 2 a b sin 2 π n A_j=\frac12 ab \sin C=\frac12 ab \sin \left(\pi-\frac{2\pi}{n} \right)=\frac12 ab \sin \frac{2\pi}{n}

There are n n of these triangles; so the sum of their areas is n 2 a b sin 2 π n \frac{n}{2} ab \sin \frac{2\pi}{n}

Since sin θ θ \sin \theta \approx \theta for small θ \theta , in the limit this becomes simply π a b \pi ab

(which is interesting - I wonder how this is related to the area of an ellipse?)

Equating this to the given form, and letting x = a b x=\frac{a}{b} , π a b = π ( a 2 + 2 a b 12 b 2 ) x = x 2 + 2 x 12 x 2 + x 12 = 0 \begin{aligned} \pi ab &= \pi \left(a^2+2ab-12b^2 \right) \\ x &=x^2+2x-12 \\ x^2+x-12 &=0 \end{aligned}

whose unique positive root is x = 3 x=\boxed{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...