It's All Circles!

Geometry Level 3

The orange, blue and green circles with centers O , O , O O, O', O'' are tangent to each other at P , P P, P' and P P'' as shown above and O O O \triangle{O'' OO'} is a right triangle.

If O O = x + 1 , O O = x , O O = x 1 OO' = x + 1, O''O' = x, OO'' = x - 1 and the area of region R R can be expressed as A R = a b π c β e A_{R} = \dfrac{a - b\pi - c\beta}{e} , where tan ( β ) = d e \tan(\beta) = \dfrac{d}{e} and a a , b b , c c , d d and e e are coprime positive integers, find a + b + c + d + e a + b + c + d + e .


The answer is 46.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rocco Dalto
Jan 18, 2021

O O O \triangle{O'' OO'} is a right triangle ( x 1 ) 2 + x 2 = ( x + 1 ) 2 2 x 2 2 x + 1 = x 2 + 2 x + 1 x ( x 4 ) = 0 \implies (x - 1)^2 + x^2 = (x + 1)^2 \implies 2x^2 - 2x + 1 = x^2 + 2x + 1 \implies x(x - 4) = 0 and x 0 x = 4 x \neq 0 \implies x = 4

R 1 + R 2 = 5 , R 1 + R 3 = 4 , R 2 + R 3 = 3 R 2 = 5 R 1 = 3 R 3 \implies R_{1} + R_{2} = 5, R_{1} + R_{3} = 4, R_{2} + R_{3} = 3 \implies R_{2} = 5 - R_{1} = 3 - R_{3} \implies

R 1 R 3 = 2 R_{1} - R_{3} = 2 and we have R 1 + R 3 = 4 R 1 = 3 R 3 = 1 R 2 = 2 R_{1} + R_{3} = 4 \implies R_{1} = 3 \implies R_{3} = 1 \implies R_{2} = 2

and tan ( β ) = 3 4 β = arctan ( 3 4 ) \tan(\beta) = \dfrac{3}{4} \implies \beta = \arctan(\dfrac{3}{4})

For the areas of the three sectors we have:

A P O P = 1 2 ( π 2 ) = π 4 A_{PO''P''} = \dfrac{1}{2}(\dfrac{\pi}{2}) = \dfrac{\pi}{4} .

A P O P = 1 2 ( 4 ) ( π 2 arctan ( 3 4 ) ) = π 2 arctan ( 3 4 ) A_{POP'} = \dfrac{1}{2}(4)(\dfrac{\pi}{2} - \arctan(\dfrac{3}{4})) = \pi - 2\arctan(\dfrac{3}{4}) .

A P O P = 1 2 ( 9 ) arctan ( 3 4 ) = 9 2 arctan ( 3 4 ) A_{P'O'P''} = \dfrac{1}{2}(9)\arctan(\dfrac{3}{4}) = \dfrac{9}{2}\arctan(\dfrac{3}{4})

and A O O O = 6 A R = 24 5 π 10 arctan ( 3 4 ) 4 = A_{\triangle{O''OO'}} = 6 \implies A_{R} = \dfrac{24 - 5\pi - 10\arctan(\dfrac{3}{4})}{4} =

a b π c arctan ( d e ) e a + b + c + d + e = 46 \dfrac{a - b\pi - c\arctan(\dfrac{d}{e})}{e} \implies a + b + c + d + e = \boxed{46} .

Chew-Seong Cheong
Jan 19, 2021

By Pythagorean theorem ,

O O 2 O O 2 = O O 2 ( x + 1 ) 2 ( x 1 ) 2 = x 2 4 x = x 2 x = 4 \begin{aligned} OO'^2 - OO''^2 & = O'O''^2 \\ (x+1)^2-(x-1)^2 & = x^2 \\ 4x & = x^2 \\ \implies x & = 4 \end{aligned}

Let the radii of the green, orange, and blue circles be r 1 r_1 , r 2 r_2 , and r 3 r_3 respectively. Then we have:

{ r 1 + r 2 = 3 . . . ( 1 ) r 2 + r 3 = 5 . . . ( 2 ) r 3 + r 1 = 4 . . . ( 3 ) ( 2 ) ( 1 ) + ( 3 ) : 2 r 3 = 6 r 3 = 3 r 1 = 1 , r 2 = 2 \begin{cases} r_1+r_2 = 3 & ...(1) \\ r_2 + r_3 = 5 & ...(2) \\ r_3 + r_1 = 4 & ...(3) \end{cases} \implies (2)-(1)+(3): \ 2r_3 = 6 \implies r_3 = 3 \implies r_1 = 1, r_2 = 2

Then the area of R R

A R = [ O O O ] [ O P P ] [ O P P ] [ O P P ] = 3 4 2 π 1 2 4 β 2 π π 3 2 π 2 β 2 π π 2 2 = 6 π 4 9 β 2 π + 2 β = 24 5 π 10 β 4 where β = tan 1 3 4 \begin{aligned} A_R & = [OO'O''] - [O''PP''] - [O'P'P''] -[OPP'] \\ & = \frac {3\cdot 4}2 - \frac {\pi\cdot 1^2}4 - \frac {\beta}{2\pi} \cdot \pi \cdot 3^2 - \frac {\frac \pi 2 - \beta}{2 \pi} \cdot \pi \cdot 2^2 \\ & = 6 - \frac \pi 4 - \frac {9\beta}2 - \pi + 2\beta \\ & = \frac {24-5\pi - 10\beta}4 & \small \blue{\text{where }\beta = \tan^{-1} \frac 34} \end{aligned}

Therefore, a + b + c + d + e = 24 + 5 + 10 + 3 + 4 = 46 a+b+c+d+e = 24+5+10+3+4 = \boxed{46} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...