(1): Using find the conic that passes thru the points and .
(2): Find the circle that passes thru the points and .
(3): Find the circle that passes thru the points and .
Let be the area of region bounded by the conic in (1) and the circle in (2) and be the area of the region bounded by the conic in (1) and the circle in (3) and be the area of the region bounded by the circle in (2) and the circle in (3) .
Find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
For the conic a x 2 + b x y + c y 2 + d x + e y = − 1 6 .
For ( 0 , 4 ) : ⟹ 4 c + e = − 4
For ( 0 , − 4 ) : ⟹ 4 c − e = − 4
For ( 2 , 0 ) : ⟹ 2 a + d = − 8
For ( − 2 , 0 ) : ⟹ 2 a − d = − 8
For ( 1 , 4 ) : ⟹ a + 4 b + 1 6 c + d + 4 e = − 1 6
⟹ c = − 1 , e = 0 , a = − 4 , d = 0 and b = 1 ⟹ − 4 x 2 + x y − y 2 = − 1 6 or 4 x 2 − x y + y 2 = 1 6 which is an ellipse since b 2 − 4 a c > 0 .
Solving for y we obtain:
y = 2 1 ( ± 6 4 − 1 5 x 2 + x )
Using the portion of the ellipse above the line y = 2 x ⟹ y 1 ( x ) = 2 1 ( 6 4 − 1 5 x 2 + x ) .
For the circle in (2) ( x − a ) 2 + ( y − b ) 2 = r 2 .
For (1) ( 0 , 4 ) : ⟹ a 2 + 1 6 − 8 b + b 2 = r 2
For (2) ( 0 , 5 ) : ⟹ a 2 + 2 5 − 1 0 b + b 2 = r 2
Subtracting (1) from (2) we obtain: 9 − 2 b = 0 ⟹ b = 2 9 .
For (3) ( − 1 , 3 ) ⟹ 1 + 2 a + a 2 + 9 − 6 b + b 2 = r 2
For (1) ( 0 , 4 ) : ⟹ a 2 + 1 6 − 8 b + b 2 = r 2
Subtracting (1) from (2) we obtain: a + b = 3 and using b = 2 9 ⟹ a = − 2 3
⟹ r 2 = 2 5 ⟹ ( x + 2 3 ) 2 + ( y − 2 9 ) 2 = 2 5 .
Solving for y we obtain:
y = ± 2 5 − ( x + 2 3 ) 2 + 2 9
Using the portion of the circle below the line y = 2 9 ⟹ y 2 ( x ) = − 2 5 − ( x + 2 3 ) 2 + 2 9
You can check that ( − 1 , 3 ) satisfies the ellipse above.
From graph above the ellipse and the circle in (2) intersect at ( − 1 , 3 ) , ( 0 , 4 ) .
For ∫ − 1 0 y 1 ( x ) d x :
Let I 1 = 2 1 ∫ − 1 0 6 4 − 1 5 x 2 d x .
Let 1 5 x = 8 sin ( θ ) ⟹ d x = 1 5 8 cos ( θ ) d θ ⟹
1 5 3 2 ∫ cos 2 ( θ ) d θ = 1 5 1 6 ∫ ( 1 + cos ( 2 θ ) ) d θ = 1 5 1 6 ( θ + 2 1 sin ( 2 θ ) ) = 1 5 1 6 ( arcsin ( 8 1 5 x ) + 6 4 1 5 x 6 4 − 1 5 x 2 )
⟹ I 1 ( x ) ∣ − 1 0 = 1 5 1 6 ( arcsin ( 8 1 5 ) + 6 4 7 1 5 )
⟹ ∫ − 1 0 y 1 ( x ) d x = 1 5 1 6 arcsin ( 8 1 5 ) + 4 7 − 4 1 = 1 5 1 6 arcsin ( 8 1 5 ) + 2 3 ≈ = 3 . 5 8 7 7 3 6
For ∫ − 1 0 y 2 ( x ) d x :
Let I 2 = − ∫ − 1 0 2 5 − ( x + 2 3 ) 2 d x
Let x + 2 3 = 2 5 sin ( θ ) ⟹ d x = 2 5 cos ( θ ) d θ
− 2 5 ∫ cos 2 ( θ ) d θ = − 4 5 ∫ ( 1 + cos ( 2 θ ) ) d θ = − 4 5 ( θ + 2 1 sin ( 2 θ ) ) = − 4 5 ( arcsin ( 2 5 x + 2 3 ) + 5 2 ( x + 2 3 ) ( 2 5 − ( x + 2 3 ) 2 ) )
⟹ I 2 ( x ) ∣ − 1 0 = − 4 5 ( arcsin ( 1 0 3 ) − arcsin ( 1 0 1 ) )
⟹ ∫ − 1 0 y 2 ( x ) d x = − 4 5 ( arcsin ( 1 0 3 ) − arcsin ( 1 0 1 ) ) + 2 9 ≈ 3 . 3 4 0 8 8 1
⟹ A 1 = ∫ − 1 0 y 1 ( x ) − y 2 ( x ) d x = 0 . 2 4 6 8 5 5 .
For the circle in (3) ( x − a ) 2 + ( y − b ) 2 = r 2 .
From the circle in (2) using pts ( 0 , 4 ) and 0 , 5 ) we had b = 2 9 .
For (4) ( 1 , 4 ) : ⟹ 1 − 2 a + a 2 + 1 6 − 8 b + b 2 = r 2
For (1) ( 0 , 4 ) : ⟹ a 2 + 1 6 − 8 b + b 2 = r 2
Subtracting (1) from (4) we obtain a = 2 1 ⟹ r 2 = 2 1 ⟹
( x − 2 1 ) 2 + ( y − 2 9 ) 2 = 2 1 .
Solving for y we obtain:
y = ± 2 1 − ( x − 2 1 ) 2 + 2 9
Using the portion of the circle below the line y = 2 9 ⟹ y 3 ( x ) = − 2 1 − ( x − 2 1 ) 2 + 2 9 .
From graph above the ellipse and the circle in (3) intersect at ( 0 , 4 ) , ( 1 , 4 ) .
Changing the limits of integration for the ellipse y 1 ( x ) above ⟹ ∫ 0 1 y 1 ( x ) d x = 1 5 1 6 arcsin ( 8 1 5 ) + 2 ≈ 4 . 0 8 7 7 3 6 .
For ∫ 0 1 y 3 ( x ) d x :
Let I 3 = − ∫ 0 1 2 1 − ( x + 2 1 ) 2 d x
Let x − 2 1 = 2 1 sin ( θ ) ⟹ d x = 2 1 cos ( θ ) d θ ⟹
I 3 = − 2 1 ∫ 4 − π 4 π cos 2 ( θ ) d θ = − 4 1 ∫ 4 − π 4 π ( 1 + cos ( 2 θ ) ) d θ = − 4 1 ( θ + 2 1 sin ( 2 θ ) ) ∣ 4 − π 4 π = − 8 π + 2
⟹ ∫ 0 1 y 3 ( x ) d x = − 8 π + 2 + 2 9 = 8 3 4 − π ≈ 3 . 8 5 7 3 0 1
⟹ A 2 = ∫ 0 1 y 1 ( x ) − y 3 ( x ) d x = 0 . 2 3 0 4 3 5
Translating the center of the circles ( x + 2 3 ) 2 + ( y − 2 9 ) 2 = 2 5 and ( x − 2 1 ) 2 + ( y − 2 9 ) 2 = 2 1 to ( 0 , 0 ) and ( 0 , 2 ) respectively we obtain:
x 2 + y 2 = 2 5
x 2 + ( y − 2 ) 2 = 2 1 .
The circles above intersect at ( 2 1 , 2 3 ) and ( − 2 1 , 2 3 ) .
Solving for y in both circles above we obtain:
y 4 ( x ) = 2 5 − x 2 above the line y = 0
y 5 ( x ) = − 2 1 − x 2 + 2 below the line y = 2 .
A 3 = ∫ − 2 1 2 1 y 4 ( x ) − y 5 ( x ) d x .
For I 4 = ∫ − 2 1 2 1 y 4 ( x ) d x
Let x = 2 5 sin ( θ ) ⟹ d x = 2 5 cos ( θ ) d θ ⟹
2 5 ∫ cos 2 ( θ ) d θ = 4 5 ∫ ( 1 + cos ( θ ) ) d θ = 4 5 ( θ + sin ( θ ) cos ( θ ) ) = 4 5 ( arcsin ( 5 2 x ) + 5 1 ( 2 x 5 − 2 x 2 ) )
⟹ I 4 ( x ) ∣ − 2 1 2 1 = 2 5 arcsin ( 1 0 1 ) + 4 3
For I 5 = ∫ − 2 1 2 1 y 5 ( x ) d x
Let x − 2 1 = 2 1 sin ( θ ) ⟹ d x = 2 1 cos ( θ ) d θ ⟹
I 5 = − 2 1 ∫ 4 − π 4 π cos 2 ( θ ) d θ − 2 = − 4 1 ∫ 4 − π 4 π ( 1 + cos ( 2 θ ) ) d θ − 2 = − 4 1 ( θ + 2 1 sin ( 2 θ ) ) ∣ 4 − π 4 π − 2 = − 8 π + 4 7
⟹ A 3 = 2 5 arcsin ( 1 0 1 ) + 4 3 + 8 π − 4 7 = 2 5 arcsin ( 1 0 1 ) + 8 π − 8 ≈ 0 . 1 9 7 0 7 5
⟹ A 1 + A 2 + A 3 = 0 . 6 7 4 3 6 5 .
Note: You could have used the initial circles ( x + 2 3 ) 2 + ( y − 2 9 ) 2 = 2 5 and ( x − 2 1 ) 2 + ( y − 2 9 ) 2 = 2 1 and solved for x 1 ( y ) = 2 5 − ( y − 2 9 ) 2 − 2 3 (right of x = − 2 3 ) and x 2 ( y ) = − 2 1 − ( y − 2 9 ) 2 + 2 1 (left of x = 2 1 ) , then A 3 = ∫ 4 5 x 1 ( y ) − x 2 ( y ) d y .
I translated the two circles for the sole reason of not being able to shade in the region using functions of y in Geogebra. By translating the two circles the region R 3 in the graph above results in the same area as the initial region.
I hope this didn't cause any confusion.