Factorial Fest

Level 2

If J = 2 1000 ( ( 2001 2 ) ! + J ) = a + b b ! 2 c π c ! \displaystyle\sum_{J = 2}^{1000} \left(\left(\frac{-2001}{2}\right)! + J\right) = a + \dfrac{b * b! * 2^c\sqrt{\pi}}{c!} where gcd ( a , b , c ) = 1 \gcd (a,b,c) = 1 , find a + b + c . a + b + c.

Refer to previous problem:


The answer is 503497.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Aug 26, 2018

Using the gamma function Γ ( p ) = 0 t p 1 e t d t \Gamma(p) = \int_{0}^{\infty} t^{p - 1} e^{-t} dt we obtain:

Γ ( 1 2 ) = 0 t 1 2 e t d t \Gamma(\dfrac{1}{2}) = \displaystyle\int_{0}^{\infty} t^{-\frac{1}{2}} e^{-t} dt

Let s 2 = t 2 s d s = d t s^2 = t \implies 2s ds = dt \implies

Γ ( 1 2 ) = 2 0 e s 2 d s \Gamma(\dfrac{1}{2}) = 2\displaystyle\int_{0}^{\infty} e^{-s^2} ds

Since s is a dummy variable we can write:

( Γ ( 1 2 ) ) 2 = (\Gamma(\dfrac{1}{2}))^2 = 4 0 e x 2 d x 0 e y 2 d y = 4\displaystyle\int_{0}^{\infty} e^{-x^2} dx \int_{0}^{\infty} e^{-y^2} dy = 4 0 0 e ( x 2 + y 2 ) d x d y 4\displaystyle\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2 + y^2)} dx dy

Let x = r cos θ , y = r sin θ x = r\cos\theta, y = r\sin\theta

Using the Jacobian ( Γ ( 1 2 ) ) 2 = 4 0 π 2 0 e r 2 r d r d θ = \implies (\Gamma(\dfrac{1}{2}))^2 = 4\displaystyle\int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} e^{-r^2} r dr d\theta = 2 0 π 2 e r 2 0 d θ = 2 0 π 2 d θ = π Γ ( 1 2 ) = π -2\displaystyle\int_{0}^{\frac{\pi}{2}} e^{-r^2}|_{0}^{\infty} d\theta = 2\displaystyle\int_{0}^{\frac{\pi}{2}} d\theta = \pi \implies \Gamma(\dfrac{1}{2}) = \sqrt{\pi}

Now, using integration by parts you can show that Γ ( p + 1 ) = p Γ ( p ) \Gamma(p + 1) = p \Gamma(p)

Show Γ ( 1 ) = 1 \Gamma(1) = 1 and recursively using Γ ( p + 1 ) = p Γ ( p ) Γ ( p + 1 ) = p ! \Gamma(p + 1) = p \Gamma(p) \implies \Gamma(p + 1) = p! for any integer p 0 p \geq 0 and p can be extended to reals so that Γ ( 1 2 ) = Γ ( 1 2 + 1 ) = π = ( 1 2 ) ! \Gamma(\dfrac{1}{2}) = \Gamma(\dfrac{-1}{2} + 1) = \sqrt{\pi} = (\dfrac{-1}{2})!

Using Γ ( p ) = Γ ( p + 1 ) p \Gamma(p) = \dfrac{\Gamma(p + 1)}{p} and Γ ( 1 2 ) = π = ( 1 2 ) ! \Gamma(\dfrac{1}{2}) = \sqrt{\pi} = (\dfrac{-1}{2})!

\implies

S 0 = Γ ( 1 2 ) = 2 Γ ( 1 2 ) = 2 π = ( 3 2 ) ! S_{0} = \Gamma(-\dfrac{1}{2}) = -2\Gamma(\dfrac{1}{2}) = -2\sqrt{\pi} = (-\dfrac{3}{2})!

S 1 = Γ ( 3 2 ) = 2 3 Γ ( 1 2 ) = 2 2 1 3 π = ( 5 2 ) ! S_{1} = \Gamma(-\dfrac{3}{2}) = -\dfrac{2}{3}\Gamma(-\dfrac{1}{2}) = \dfrac{2^2}{1 * 3}\sqrt{\pi} = (-\dfrac{5}{2})!

S 2 = Γ ( 5 2 ) = 2 5 Γ ( 3 2 ) = 2 3 1 3 5 π = ( 7 2 ) ! S_{2} = \Gamma(-\dfrac{5}{2}) = -\dfrac{2}{5}\Gamma(-\dfrac{3}{2}) = -\dfrac{2^3}{1 * 3 * 5}\sqrt{\pi} = (-\dfrac{7}{2})!

In General:

S K = Γ ( K 1 2 ) = ± 2 K + 1 π 1 3 5 ( 2 K + 1 ) = ( K 3 2 ) ! S_{K} = \Gamma(-K -\dfrac{1}{2}) = \pm\dfrac{2^{K + 1}\sqrt{\pi}}{1 * 3 * 5 * * * (2K + 1)} = (-K -\dfrac{3}{2})!

( K 3 2 ) ! = ± 2 2 K + 1 K ! π ( 2 K + 1 ) ! \implies (-K - \dfrac{3}{2})! = \pm\dfrac{2^{2K + 1} * K!\sqrt{\pi}}{(2K + 1)!} , where K K is a non-negative integer.

Note: ( 2 K + 1 ) ! = 1 2 3 ( 2 K ) ( 2 K + 1 ) = 2 K K ! ( 1 3 5 ( 2 K + 1 ) ) (2K + 1)! = 1 * 2 * 3 * * * (2K) * (2K + 1) = 2^K * K! * (1 * 3 * 5 * * * (2K + 1)) \implies

1 3 5 ( 2 K + 1 ) = ( 2 K + 1 ) ! 2 K K ! 1 * 3 * 5 * * * (2K + 1) = \dfrac{(2K + 1)!}{2^K * K!}

For K N K \in \mathbb{N}

J = 2 K + 1 ( ( K 3 2 ) ! + J ) = ( K + 2 ) ( K + 1 ) 2 1 + K ( K 3 2 ) ! = K ( K + 3 ) 2 ± 2 2 K + 1 K K ! π ( 2 K + 1 ) ! \displaystyle\sum_{J = 2}^{K + 1} ( (-K - \dfrac{3}{2})! + J ) = \dfrac{(K + 2)(K + 1)}{2} - 1 + K * (-K - \dfrac{3}{2})! = \dfrac{K(K + 3)}{2} \pm \dfrac{2^{2K + 1} * K * K!\sqrt{\pi}}{(2K + 1)!}

J = 2 1000 ( ( 999 3 2 ) ! + J ) = J = 2 1000 ( ( 2001 2 ) ! + J ) = \therefore \displaystyle\sum_{J = 2}^{1000} ((-999 - \dfrac{3}{2})! + J) = \displaystyle\sum_{J = 2}^{1000} \left(\left(\frac{-2001}{2}\right)! + J\right) =

999 501 + 999 ( 999 ) ! 2 1999 π ( 1999 ) ! = 500499 + 999 ( 999 ) ! 2 1999 π ( 1999 ) ! = a + b b ! 2 c π c ! a + b + c = 503497 999 * 501 + \dfrac{999 * (999)! * 2^{1999}\sqrt{\pi}}{(1999)!} = 500499 + \dfrac{999 * (999)! * 2^{1999}\sqrt{\pi}}{(1999)!} = a + \dfrac{b * b! * 2^c\sqrt{\pi}}{c!} \implies a + b + c = \boxed{503497} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...