It's All Geometry!

Geometry Level 3

In right A B C \triangle{ABC} above, A D = x , D E = x + 1 , E C = x + 2 AD = x, DE = x + 1, EC = x + 2 and m D B E = m B C A = α m\angle{DBE} = m\angle{BCA} = \alpha . Find the value of x x for which the area A D B E = x 2 1 A_{\triangle{DBE}} = x^2 - 1 .


The answer is 4.254994.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chris Lewis
Nov 16, 2020

The area of Δ D B E \Delta DBE is 1 2 D E A B \frac12 DE \cdot AB .

Since D E = x + 1 DE=x+1 , this means that A B = 2 x 2 AB=2x-2 .

From Δ A B C \Delta ABC , tan α = 2 x 2 3 x + 3 \tan \alpha =\frac{2x-2}{3x+3}

From triangles Δ A B D \Delta ABD and Δ A B E \Delta ABE , α = tan 1 2 x + 1 2 x 2 tan 1 x 2 x 2 \alpha=\tan^{-1} \frac{2x+1}{2x-2}-\tan^{-1} \frac{x}{2x-2}

Using the tangent addition formula, and after a bit of paperwork, this becomes tan α = 2 x 2 2 6 x 2 7 x + 4 \tan\alpha=\frac{2x^2-2}{6x^2-7x+4}

Combining these results and tidying, we get the cubic ( x 1 ) ( 3 x 2 13 x + 1 ) = 0 (x - 1) \left(3 x^2 - 13 x + 1\right)=0

The only root that makes sense in the context of the problem is x = 13 + 157 6 4.255 x=\frac{13+\sqrt{157}}{6} \approx \boxed{4.255}

Rocco Dalto
Nov 16, 2020

m = 180 ( α + β ) = 180 λ λ = α + β m = 180 - (\alpha + \beta) = 180 - \lambda \implies \lambda = \alpha + \beta

\implies tan ( λ ) = h x = tan ( α + β ) \tan(\lambda) = \dfrac{h}{x} = \tan(\alpha + \beta) , where tan ( β ) = h 2 x + 1 \tan(\beta) = \dfrac{h}{2x + 1} and tan ( α ) = h 3 x + 3 \tan(\alpha) = \dfrac{h}{3x + 3}

\implies h x = tan ( α + β ) = tan ( α ) + tan ( β ) 1 tan ( α ) tan ( β ) = \dfrac{h}{x} = \tan(\alpha + \beta) = \dfrac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)} = h 3 x + 3 + h 2 x + 1 1 h 2 ( 3 x + 3 ) ( 2 x + 1 ) = ( 5 x + 4 6 x 2 + 9 x + 3 h 2 ) h \dfrac{\dfrac{h}{3x + 3} + \dfrac{h}{2x + 1}}{1 - \dfrac{h^2}{(3x + 3)(2x + 1)}} = (\dfrac{5x + 4}{6x^2 + 9x + 3 - h^2})h

1 x = 5 x + 4 6 x 2 + 9 x + 3 h 2 6 x 2 + 9 x + 3 h 2 = 5 x 2 + 4 x \implies \dfrac{1}{x} = \dfrac{5x + 4}{6x^2 + 9x + 3 - h^2} \implies 6x^2 + 9x + 3 - h^2 = 5x^2 + 4x

h 2 = x 2 + 5 x + 3 h = x 2 + 5 x + 3 \implies h^2 = x^2 + 5x + 3 \implies h = \sqrt{x^2 + 5x + 3}

A D B E = 1 2 ( x + 1 ) ( x 2 + 5 x + 3 ) = x 2 1 = ( x 1 ) ( x + 1 ) \implies A_{\triangle{DBE}} = \dfrac{1}{2}(x + 1)(\sqrt{x^2 + 5x + 3}) = x^2 - 1 = (x - 1)(x + 1) \implies

x 2 + 5 x + 3 = 2 ( x 1 ) x 2 + 5 x + 3 = 4 x 2 8 x + 4 \sqrt{x^2 + 5x + 3} = 2(x - 1) \implies x^2 + 5x + 3 = 4x^2 - 8x + 4 \implies

3 x 2 13 x + 1 = 0 x = 13 ± 157 6 3x^2 - 13x + 1 = 0 \implies x = \dfrac{13 \pm \sqrt{157}}{6} and x > 1 x = 13 + 157 6 x > 1 \implies x = \dfrac{13 + \sqrt{157}}{6} 4.254994 \approx \boxed{4.254994} .

You don't need the constraint x > 1 x> 1 because if we are given that the area is x 2 1 x^2-1 , then x > 1 x>1 follows.

Pi Han Goh - 6 months, 3 weeks ago

Log in to reply

I did realize that since A D B E = x 2 1 x > 1 A_{\triangle{DBE}} = x^2 - 1 \implies x > 1 , but I added it. I removed it.

Rocco Dalto - 6 months, 3 weeks ago
Chew-Seong Cheong
Nov 17, 2020

Since A D B A = x 2 1 A_{\triangle DBA} = x^2 - 1 , A B = 2 ( x 1 ) \implies AB = 2(x-1) so that A D B A = 1 2 A B D E = 1 2 2 ( x 1 ) ( x + 1 ) = x 2 1 A_{\triangle DBA} = \dfrac 12 AB \cdot DE = \dfrac 12 \cdot 2(x-1)(x+1) = x^2 -1 . The B D = A B 2 + A D 2 = ( 2 ( x 1 ) ) 2 + x 2 = 5 x 2 8 x + 4 BD = \sqrt{AB^2+AD^2} = \sqrt{(2(x-1))^2 + x^2} = \sqrt{5x^2 - 8x + 4} . Note that B D E \triangle BDE and B C D \triangle BCD are similar, then we have:

B D D E = C D B D 5 x 2 8 x + 4 x + 1 = 2 x + 3 5 x 2 8 x + 4 5 x 2 8 x + 4 = 2 x 2 + 5 x + 3 3 x 2 13 x + 1 = 0 x = { 13 + 157 6 4.254994014 13 157 6 0.078339319 \begin{aligned} \frac {BD}{DE} & = \frac {CD}{BD} \\ \frac {\sqrt{5x^2-8x+4}}{x+1} & = \frac {2x+3}{\sqrt{5x^2-8x+4}} \\ 5x^2-8x+4 & = 2x^2 + 5x + 3 \\ 3x^2 - 13x + 1 & = 0 \\ \implies x & = \begin{cases} \dfrac {13+\sqrt{157}}6 \approx 4.254994014 \\ \dfrac {13-\sqrt{157}}6 \approx 0.078339319 \end{cases} \end{aligned}

From A D B E = x 2 1 x > 1 A_{\triangle DBE} = x^2 -1 \implies x > 1 , therefore x 4.25 x \approx \boxed{4.25} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...