It's All Geometry!

Geometry Level 3

In A B C \triangle{ABC} , A B = 3 2 A C \overline{\rm AB} = \dfrac{3}{2}\overline{\rm AC} , m B A D = m D A C = 3 0 m\angle{BAD} = m\angle{DAC} = 30^{\circ} , and A D = 50 \overline{\rm AD} = 50 . If the area of A B C \triangle ABC , A A B C = a c b c b b , A_{\triangle{ABC}} = \dfrac{a^{c b}}{c b\sqrt{b}}, where a a , b b , and c c are prime numbers, find a + b + c a + b + c .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rocco Dalto
Nov 21, 2020

Let A C = 2 x A B = 3 x \overline{\rm AC} = 2x \implies \overline{\rm AB} = 3x and α + λ = 12 0 α = 12 0 λ \alpha + \lambda = 120^{\circ} \implies \alpha = 120^{\circ} - \lambda .

Using the law of cosines on A B C \triangle{ABC} with included B A C y = 7 x \angle{BAC} \implies y = \sqrt{7}x .

Using the law of sines on A B C 3 x sin ( λ ) = 7 x sin ( 6 0 ) = 2 7 x 3 \triangle{ABC} \implies \dfrac{3x}{\sin(\lambda)} = \dfrac{\sqrt{7}x}{\sin(60^{\circ})} = \dfrac{2\sqrt{7}x}{\sqrt{3}} \implies

sin ( λ ) = 3 2 3 7 \sin(\lambda) = \dfrac{3}{2}\sqrt{\dfrac{3}{7}}

Using the law of sines on D A C 50 sin ( λ ) = n sin ( 3 0 ) = 2 n \triangle{DAC} \implies \dfrac{50}{\sin(\lambda)} = \dfrac{n}{\sin(30^{\circ})} = 2n \implies

n = 25 sin ( λ ) = 50 3 7 3 n = \dfrac{25}{\sin(\lambda)} = \boxed{\dfrac{50}{3}\sqrt{\dfrac{7}{3}}}

Similarly using the law of sines on B A D m = 25 sin ( α ) = \triangle{BAD} \implies m = \dfrac{25}{\sin(\alpha)} = 25 sin ( 12 0 λ ) = \dfrac{25}{\sin(120^{\circ} - \lambda)} =

50 3 cos ( λ ) + sin ( λ ) = 25 7 3 \dfrac{50}{\sqrt{3}\cos(\lambda) + \sin(\lambda)} = \boxed{25\sqrt{\dfrac{7}{3}}} , where cos ( λ ) = 1 2 7 \cos(\lambda) = \dfrac{1}{2\sqrt{7}}

y = m + n = 125 3 7 3 = 7 x \implies y = m + n = \boxed{\dfrac{125}{3}\sqrt{\dfrac{7}{3}}} = \sqrt{7}x \implies x = 125 3 3 2 x = 250 3 3 x = \dfrac{125}{3\sqrt{3}} \implies 2x = \dfrac{250}{3\sqrt{3}} \implies

h = 2 x sin ( λ ) = 125 7 h = 2x\sin(\lambda) = \boxed{\dfrac{125}{\sqrt{7}}} \implies A A B C = 1 2 y h = 12 5 2 2 3 3 = 5 ( 2 3 ) 2 3 3 = A_{\triangle{ABC}} = \dfrac{1}{2}yh = \dfrac{125^2}{2 * 3\sqrt{3}} = \dfrac{5^{(2 * 3)}}{2 * 3\sqrt{3}} =

a c b c b b a + b + c = 10 \dfrac{a^{c * b}}{c * b\sqrt{b}} \implies a + b + c = \boxed{10} .

Fletcher Mattox
Nov 23, 2020

Using the cosine rule on the three triangles:

( 3 x ) 2 + 5 0 2 y 2 = 2 3 x 50 cos π 6 (3x)^2 + 50^2 - y^2 = 2\cdot3x\cdot50\cdot\cos \frac{\pi}{6}

( 2 x ) 2 + 5 0 2 z 2 = 2 2 x 50 cos π 6 (2x)^2 + 50^2 - z^2 = 2\cdot2x\cdot50\cdot\cos \frac{\pi}{6}

( 3 x ) 2 + ( 2 x ) 2 ( y + z ) 2 = 2 3 x 2 x cos π 3 (3x)^2 + (2x)^2 - (y+z)^2 = 2\cdot3x\cdot2x\cdot\cos\frac{\pi}{3}

Three equations three unkowns, solve for the sides and compute the area with heron's formula (see below):

A C D = 15625 3 18 = 5 3 2 3 2 3 a = 5 , b = 3 , c = 2 a + b + c = 10 \triangle{ACD} = \dfrac{15625\sqrt{3}}{18} = \dfrac{5^{3\cdot2}}{3\cdot2\sqrt{3}} \implies a=5, b=3,c=2\implies a+b+c=\boxed{10}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
from sympy import *
from sympy.abc import x, y, z

def heron(a, b, c):
    s = (a + b + c)/2 
    return sqrt(s*(s - a)*(s - b)*(s - c))

M = 50 
eq1 = (3*x)**2 + M**2 - y**2 - 2 * 3*x * M * cos(pi/6)
eq2 = (2*x)**2 + M**2 - z**2 - 2 * 2*x * M * cos(pi/6)
eq3 = (3*x)**2 + (2*x)**2 - (y + z)**2 - 2 * 3*x * 2*x * cos(pi/3)
sol = solve([eq1, eq2, eq3], [x,y,z])
for x, y, z in sol:
    area = heron(3*x, 2*x, y + z)
    if area > 0:
        print(simplify(area))

1
15625*sqrt(3)/18

blah 15625 3 18 = 5 3 2 3 2 3 \dfrac{15625\sqrt{3}}{18} = \dfrac{5^{3\cdot2}}{3\cdot2\sqrt{3}}

Chew-Seong Cheong
Nov 23, 2020

Similar solution as @Rocco Dalto's

By sine rule ,

{ A B A D = sin A D B sin B = sin ( 18 0 A D B sin B = sin A D C sin B . . . ( 1 ) A C A D = sin A D C sin C . . . ( 2 ) \begin{cases} \dfrac {AB}{AD} = \dfrac {\sin \angle ADB}{\sin B} = \dfrac {\sin (180^\circ - \angle ADB}{\sin B} = \dfrac {\sin \angle ADC}{\sin B} & ...(1) \\ \dfrac {AC}{AD} = \dfrac {\sin \angle ADC}{\sin C} & ...(2) \end{cases}

From ( 1 ) ( 2 ) \dfrac {(1)}{(2)} :

A B A C = sin C sin B Note that C = 18 0 6 0 B 3 2 = sin ( 12 0 B ) sin B 3 sin B = 2 sin ( 12 0 B ) = 3 cos B + sin B tan B = 3 2 \begin{aligned} \frac {AB}{AC} & = \frac {\sin \blue C}{\sin B} & \small \blue{\text{Note that }C = 180^\circ - 60^\circ - B} \\ \frac 32 & = \frac {\sin (120^\circ -B)}{\sin B} \\ 3 \sin B & = 2 \sin (120^\circ - B) = \sqrt 3 \cos B + \sin B \\ \implies \tan B & = \frac {\sqrt 3}2 \end{aligned}

From ( 1 ) (1) :

A B A D = sin A D C sin B Note that A D C = B + 3 0 A B 50 = sin ( B + 3 0 ) sin B = 1 2 cos B + 3 2 sin B sin B A B 25 = cot B + 3 = 2 3 + 3 A B = 5 3 3 \begin{aligned} \frac {AB}{AD} & = \frac {\sin \blue{\angle ADC}}{\sin B} & \small \blue{\text{Note that }\angle ADC = B + 30^\circ} \\ \frac {AB}{50} & = \frac {\sin(B+30^\circ)}{\sin B} \\ & = \frac {\frac 12 \cos B + \frac {\sqrt 3}2 \sin B}{\sin B} \\ \frac {AB}{25} & = \cot B + \sqrt 3 = \frac 2{\sqrt 3} + \sqrt 3 \\ \implies AB & = \frac {5^3}{\sqrt 3} \end{aligned}

The area of A B C \triangle ABC : A A B C = A B A C sin 6 0 2 = 2 3 A B 2 3 2 2 = ( 5 3 3 ) 2 1 2 3 = 5 6 6 3 A_{\triangle ABC} = \dfrac {AB\cdot AC \sin 60^\circ}2 = \dfrac {\frac 23AB^2 \cdot \frac {\sqrt 3}2}2 = \left(\dfrac {5^3}{\sqrt 3}\right)^2\cdot \dfrac 1{2\sqrt 3} = \dfrac {5^6}{6\sqrt 3} . Therefore a + b + c = 5 + 2 + 3 = 10 a+b+c = 5+2+3 = \boxed{10}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...