It's All Gold 2.

Level 2

Let ϕ = 1 + 5 2 \phi = \dfrac{1 + \sqrt{5}}{2} .

Which of the following below is true:

(1) 3 ϕ 2 = ( 10.001001001001... ) ϕ \:\ \dfrac{3\phi}{2} = (10.001001001001 ... )_{\phi} and 4 ϕ = ( 1010.101010101010... ) ϕ 4\phi = (1010.101010101010 ...)_{\phi} and ϕ 1 2 = ( 0.100100100100... ) ϕ \dfrac{\phi - 1}{2} = (0.100100100100 ... )_{\phi} .

(2) 3 ϕ 2 = ( 10.100100100100... ) ϕ \:\ \dfrac{3\phi}{2} = (10.100100100100 ... )_{\phi} and 4 ϕ = ( 1010.001001001001... ) ϕ 4\phi = (1010.001001001001 ...)_{\phi} and ϕ 1 2 = ( 0.100100100100... ) ϕ \dfrac{\phi - 1}{2} = (0.100100100100 ... )_{\phi} .

(3) 3 ϕ 2 = ( 10.100100100100... ) ϕ \:\ \dfrac{3\phi}{2} = (10.100100100100 ... )_{\phi} and 4 ϕ = ( 1010.010101010101... ) ϕ 4\phi = (1010.010101010101 ...)_{\phi} and ϕ 1 2 = ( 0.001001001001... ) ϕ \dfrac{\phi - 1}{2} = (0.001001001001 ... )_{\phi} .

(4) 3 ϕ 2 = ( 10.001001001001... ) ϕ \:\ \dfrac{3\phi}{2} = (10.001001001001 ... )_{\phi} and 4 ϕ = ( 1010.101010101010... ) ϕ 4\phi = (1010.101010101010 ...)_{\phi} and ϕ 1 2 = ( 0.001001001001... ) ϕ \dfrac{\phi - 1}{2} = (0.001001001001 ... )_{\phi} .

Bonus: Write a program that inputs a positive real number x x and outputs it in a real positive base b b .

For ( 1 n 50 ) (1 \leq n \leq 50) , use the program above to represent ϕ n \dfrac{\phi}{n} in base 10 ϕ 10\phi to the desired number of decimal places. For base 10 ϕ 10\phi you will need to use A 10 , B 11 , C 12 , D 13 , E 14 , F 15 A - 10, \:\ B - 11, \:\ C - 12, \:\ D - 13, \:\ E - 14, \:\ F - 15 and G 16 G - 16 for digits.

1 2 4 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Feb 13, 2019

ϕ \phi is one solution to x 2 x 1 = 0 x^2 - x - 1 = 0

For ϕ 1 : \phi - 1:

ϕ 2 = ϕ + 1 ϕ 2 1 = ϕ 1 ϕ 2 1 = 1 ϕ = 2 5 + 1 = 5 1 2 = ϕ 1 \implies \phi^2 = \phi + 1 \implies \phi^2 - 1 = \phi \implies \dfrac{1}{\phi^2 - 1} = \dfrac{1}{\phi} = \dfrac{2}{\sqrt{5} + 1} = \dfrac{\sqrt{5} - 1}{2} = \phi - 1

ϕ 1 = 1 ϕ 2 1 = 1 ϕ 2 1 1 ϕ 2 = \implies \phi - 1 = \dfrac{1}{\phi^2 - 1} = \dfrac{\dfrac{1}{\phi^2}}{1 - \dfrac{1}{\phi^2}} = n = 1 ( 1 ϕ 2 ) n = ( 0.010101010101... ) ϕ \sum_{n = 1}^{\infty} (\dfrac{1}{\phi^2})^{n} = \boxed{(0.010101010101 ...)_{\phi}}

For ϕ 2 : \dfrac{\phi}{2}:

ϕ 2 = ϕ + 1 ϕ 3 = ϕ 2 + ϕ = 2 ϕ + 1 ϕ 3 1 = 2 ϕ \phi^2 = \phi + 1 \implies \implies \phi^3 = \phi^2 + \phi = 2\phi + 1 \implies \phi^3 - 1 = 2\phi \implies

1 1 ϕ 3 = 2 ϕ 2 1 1 1 ϕ 3 = ϕ 2 2 ϕ 2 2 = n = 0 ( 1 ϕ 3 ) n ϕ 2 = n = 0 ( 1 ϕ ) 3 n + 1 = ( 0.100100100100... ) ϕ 1 - \dfrac{1}{\phi^3} = \dfrac{2}{\phi^2} \implies \dfrac{1}{1 - \dfrac{1}{\phi^3}} = \dfrac{\phi^2}{2} \implies \dfrac{\phi^2}{2} = \sum_{n = 0}^{\infty} (\dfrac{1}{\phi^3})^{n} \implies \dfrac{\phi}{2} = \sum_{n = 0}^{\infty} (\dfrac{1}{\phi})^{3n + 1} = \boxed{(0.100100100100 ... })_{\phi}

For ϕ 1 2 : \dfrac{\phi - 1}{2}:

ϕ \phi is one root of x 2 x 1 = 0 ϕ 2 = ϕ + 1 x^2 - x - 1 = 0 \implies \phi^2 = \phi + 1 \implies ϕ 3 = ϕ 2 + ϕ = 2 ϕ + 1 ϕ 3 1 = 2 ϕ 1 ϕ 3 1 = 1 2 ϕ = ( 5 1 2 ) 2 = ϕ 1 2 \implies \phi^3 = \phi^2 + \phi = 2\phi + 1 \implies \phi^3 - 1 = 2\phi \implies \dfrac{1}{\phi^3 - 1} = \dfrac{1}{2\phi} = \dfrac{(\dfrac{\sqrt{5} - 1}{2})}{2} = \dfrac{\phi - 1}{2} \implies

ϕ 1 2 = 1 ϕ 3 1 = 1 ϕ 3 1 1 ϕ 3 = j = 1 ( 1 ϕ 3 ) j = ( 0.001001001001... ) ϕ \dfrac{\phi - 1}{2} = \dfrac{1}{\phi^3 - 1} = \dfrac{\dfrac{1}{\phi^3}}{1 - \dfrac{1}{\phi^3}} = \sum_{j = 1}^{\infty} (\dfrac{1}{\phi^3})^{j} = \boxed{(0.001001001001 ...)_{\phi}}

Using the above \implies

4 ϕ = ( 2 ϕ + 1 ) + ϕ + ( ϕ 1 ) = ϕ 3 + ϕ + ( ϕ 1 ) = ( 1010.010101010101... ) ϕ 4\phi = (2\phi + 1) + \phi + (\phi - 1) = \phi^{3} + \phi + (\phi - 1) = \boxed{(1010.010101010101 ...)_{\phi}}

and

3 ϕ 2 = ϕ + ϕ 2 = ( 10.100100100100... ) ϕ \dfrac{3\phi}{2} = \phi + \dfrac{\phi}{2} = \boxed{(10.100100100100 ...)_{\phi}}

Note:

2 ϕ = ϕ + 1 + ϕ 1 = ( 11.010101010101 ) ϕ = ( 100.010101010101 ) ϕ = ϕ 2 + ( ϕ 1 ) 2\phi = \phi + 1 + \phi - 1 = (11.010101010101)_{\phi} = (100.010101010101)_{\phi} = \phi^2 + (\phi - 1)

3 ϕ = ( ϕ + 1 ) + ϕ + ( ϕ 1 ) = ϕ 2 + ϕ + ( ϕ 1 ) = ( 110.010101010101... ) ϕ = ( 1000.010101010101... ) 3\phi = (\phi + 1) + \phi + (\phi - 1) = \phi^2 + \phi + (\phi - 1) = (110.010101010101 ...)_{\phi} = (1000.010101010101 ...) = ϕ 3 + ( ϕ 1 ) = ( 2 ϕ + 1 ) + ( ϕ 1 ) = \phi^3 + (\phi - 1) = (2\phi + 1) + (\phi - 1) .

Bonus - Program below written in Free Pascal:

program irrationalbases;

{$R-}

var phi:extended;

myfile:text;

n:longint;

procedure change(var k:string);

begin{change}

IF K = '10' THEN K:= 'A';

IF K = '11' THEN K:= 'B';

IF K = '12' THEN K:= 'C';

IF K = '13' THEN K:= 'D';

IF K = '14' THEN K:= 'E';

IF K = '15' THEN K:= 'F';

IF K = '16' THEN K:= 'G';

END;{CHANGE}

function power(base:extended; exponent:integer):extended;

var n:longint;

product:extended;

begin

product:= 1;

for n:= 1 to exponent do

product:= product * base;

power:= product;

end;

function convert(x:extended; base:extended):string;

type arraytype = array[1 .. 100] of longint;

 var j,k,m,count:longint;

 a:arraytype;

 R,holdr:extended;

 strvar,strsum,strsum2:string;

begin

R:= x;

j:= 1;

while power(base,j) <= R do

begin

j:= j + 1;

end;

k:= j - 1;

count:= 1;

While k >= 0 do

begin

a[count]:= trunc(R/power(base,k));

R:= R - a[count] * power(base,k);

k:= k - 1;

count:= count + 1;

end;

count:= count - 1;

strsum:= '';

for m:= count downto 1 do

begin

str(a[m],strvar);

if a[m] > 9 then

change(strvar);

strsum:= strvar + strsum;

end;

holdr:= R;

j:= 1;

while R >= power(1/10,20) do

begin

a[j]:= trunc(R/power(1/base,j));

R:= R - a[j] * power(1/base,j);

j:= j + 1;

end;

j:= j - 1;

strsum2:= '';

for m:= j downto 1 do

begin

str(a[m],strvar);

if a[m] > 9 then

change(strvar);

strsum2:= strvar + strsum2;

end;

If holdr = R then

convert:= strsum

else

convert:= strsum + '.' + strsum2;

end;

begin

assign(myfile,'irr.txt');

rewrite(myfile);

phi:= (1 + sqrt(5))/2;

for n:= 1 to 50 do

begin

writeln(myfile,convert(phi/n,10 * phi));

writeln(convert(phi/n,10 * phi));

end;

close(myfile);

readln;

end.

Output:

1.A

0.D176E9295C4A2B813

0.8BC4B21A0FE1D80F

0.68D43FB5B2394F497

0.53D43FB5B2394F497

0.45E3CG0A9D8E572CA

0.3BFC5BA75B5C5C6C5

0.346A373070881E279

0.2EB70B76FE4F3EE2D

0.2A

0.2626A9DB8AB61E5E8

0.22F35D7791CF037F8

0.203A39D8A598DC845

0.1E140E279A182ABD5

0.1C0FBF31B2F86C03

0.1A4C8A120012C50DE

0.18BF2708B66F644BC

0.175B9E9F69BEA9366

0.161DDF8E790E36183

0.15

0.13G0AD87F8284DB9E

0.131354EF520A34904

0.123D9ABDBA7DF03AD

0.1179C788468G134AD

0.10C5D8822668D59A

0.101D3441EBC49531

0.0FB270CBBB66D43D9

0.0F215E37G045B44D

0.0E9D546C22FF18E09

0.0E1F4C9ED61007A6

0.0DAC3ACA6427F61C

0.0D3DB36CG1DEFE77B

0.0CD8AE39579BDC42

0.0C76EC1DFF6C49CEA

0.0C1ACEFDC0198AC3

0.0BC69BCED4285A29

0.0B743F33496B0B53

0.0B26455EBF6C00427

0.0ADF4204063E92F3D

0.0A98E54A2622B10A9

0.0A55FEDEC1D73EDC

0.0A164E6F09C6AA113

0.09DC8A7050G07A5AD

0.09A276F6B0FB7495A

0.096B2C0973497D96

0.093622F7BE262G068

0.0903626AG0263061D

0.08D5B02A762AD692

0.08A711FG1418A153F

0.087A59458301DA43F

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...