Let ϕ = 2 1 + 5 .
Which of the following below is true:
(1) 2 3 ϕ = ( 1 0 . 0 0 1 0 0 1 0 0 1 0 0 1 . . . ) ϕ and 4 ϕ = ( 1 0 1 0 . 1 0 1 0 1 0 1 0 1 0 1 0 . . . ) ϕ and 2 ϕ − 1 = ( 0 . 1 0 0 1 0 0 1 0 0 1 0 0 . . . ) ϕ .
(2) 2 3 ϕ = ( 1 0 . 1 0 0 1 0 0 1 0 0 1 0 0 . . . ) ϕ and 4 ϕ = ( 1 0 1 0 . 0 0 1 0 0 1 0 0 1 0 0 1 . . . ) ϕ and 2 ϕ − 1 = ( 0 . 1 0 0 1 0 0 1 0 0 1 0 0 . . . ) ϕ .
(3) 2 3 ϕ = ( 1 0 . 1 0 0 1 0 0 1 0 0 1 0 0 . . . ) ϕ and 4 ϕ = ( 1 0 1 0 . 0 1 0 1 0 1 0 1 0 1 0 1 . . . ) ϕ and 2 ϕ − 1 = ( 0 . 0 0 1 0 0 1 0 0 1 0 0 1 . . . ) ϕ .
(4) 2 3 ϕ = ( 1 0 . 0 0 1 0 0 1 0 0 1 0 0 1 . . . ) ϕ and 4 ϕ = ( 1 0 1 0 . 1 0 1 0 1 0 1 0 1 0 1 0 . . . ) ϕ and 2 ϕ − 1 = ( 0 . 0 0 1 0 0 1 0 0 1 0 0 1 . . . ) ϕ .
Bonus: Write a program that inputs a positive real number x and outputs it in a real positive base b .
For ( 1 ≤ n ≤ 5 0 ) , use the program above to represent n ϕ in base 1 0 ϕ to the desired number of decimal places. For base 1 0 ϕ you will need to use A − 1 0 , B − 1 1 , C − 1 2 , D − 1 3 , E − 1 4 , F − 1 5 and G − 1 6 for digits.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
ϕ is one solution to x 2 − x − 1 = 0
For ϕ − 1 :
⟹ ϕ 2 = ϕ + 1 ⟹ ϕ 2 − 1 = ϕ ⟹ ϕ 2 − 1 1 = ϕ 1 = 5 + 1 2 = 2 5 − 1 = ϕ − 1
⟹ ϕ − 1 = ϕ 2 − 1 1 = 1 − ϕ 2 1 ϕ 2 1 = ∑ n = 1 ∞ ( ϕ 2 1 ) n = ( 0 . 0 1 0 1 0 1 0 1 0 1 0 1 . . . ) ϕ
For 2 ϕ :
ϕ 2 = ϕ + 1 ⟹ ⟹ ϕ 3 = ϕ 2 + ϕ = 2 ϕ + 1 ⟹ ϕ 3 − 1 = 2 ϕ ⟹
1 − ϕ 3 1 = ϕ 2 2 ⟹ 1 − ϕ 3 1 1 = 2 ϕ 2 ⟹ 2 ϕ 2 = ∑ n = 0 ∞ ( ϕ 3 1 ) n ⟹ 2 ϕ = ∑ n = 0 ∞ ( ϕ 1 ) 3 n + 1 = ( 0 . 1 0 0 1 0 0 1 0 0 1 0 0 . . . ) ϕ
For 2 ϕ − 1 :
ϕ is one root of x 2 − x − 1 = 0 ⟹ ϕ 2 = ϕ + 1 ⟹ ⟹ ϕ 3 = ϕ 2 + ϕ = 2 ϕ + 1 ⟹ ϕ 3 − 1 = 2 ϕ ⟹ ϕ 3 − 1 1 = 2 ϕ 1 = 2 ( 2 5 − 1 ) = 2 ϕ − 1 ⟹
2 ϕ − 1 = ϕ 3 − 1 1 = 1 − ϕ 3 1 ϕ 3 1 = ∑ j = 1 ∞ ( ϕ 3 1 ) j = ( 0 . 0 0 1 0 0 1 0 0 1 0 0 1 . . . ) ϕ
Using the above ⟹
4 ϕ = ( 2 ϕ + 1 ) + ϕ + ( ϕ − 1 ) = ϕ 3 + ϕ + ( ϕ − 1 ) = ( 1 0 1 0 . 0 1 0 1 0 1 0 1 0 1 0 1 . . . ) ϕ
and
2 3 ϕ = ϕ + 2 ϕ = ( 1 0 . 1 0 0 1 0 0 1 0 0 1 0 0 . . . ) ϕ
Note:
2 ϕ = ϕ + 1 + ϕ − 1 = ( 1 1 . 0 1 0 1 0 1 0 1 0 1 0 1 ) ϕ = ( 1 0 0 . 0 1 0 1 0 1 0 1 0 1 0 1 ) ϕ = ϕ 2 + ( ϕ − 1 )
3 ϕ = ( ϕ + 1 ) + ϕ + ( ϕ − 1 ) = ϕ 2 + ϕ + ( ϕ − 1 ) = ( 1 1 0 . 0 1 0 1 0 1 0 1 0 1 0 1 . . . ) ϕ = ( 1 0 0 0 . 0 1 0 1 0 1 0 1 0 1 0 1 . . . ) = ϕ 3 + ( ϕ − 1 ) = ( 2 ϕ + 1 ) + ( ϕ − 1 ) .
Bonus - Program below written in Free Pascal:
program irrationalbases;
{$R-}
var phi:extended;
procedure change(var k:string);
begin{change}
IF K = '10' THEN K:= 'A';
IF K = '11' THEN K:= 'B';
IF K = '12' THEN K:= 'C';
IF K = '13' THEN K:= 'D';
IF K = '14' THEN K:= 'E';
IF K = '15' THEN K:= 'F';
IF K = '16' THEN K:= 'G';
END;{CHANGE}
function power(base:extended; exponent:integer):extended;
var n:longint;
product:extended;
begin
product:= 1;
for n:= 1 to exponent do
product:= product * base;
power:= product;
end;
function convert(x:extended; base:extended):string;
type arraytype = array[1 .. 100] of longint;
begin
R:= x;
j:= 1;
while power(base,j) <= R do
begin
j:= j + 1;
end;
k:= j - 1;
count:= 1;
While k >= 0 do
begin
a[count]:= trunc(R/power(base,k));
R:= R - a[count] * power(base,k);
k:= k - 1;
count:= count + 1;
end;
count:= count - 1;
strsum:= '';
for m:= count downto 1 do
begin
str(a[m],strvar);
if a[m] > 9 then
change(strvar);
strsum:= strvar + strsum;
end;
holdr:= R;
j:= 1;
while R >= power(1/10,20) do
begin
a[j]:= trunc(R/power(1/base,j));
R:= R - a[j] * power(1/base,j);
j:= j + 1;
end;
j:= j - 1;
strsum2:= '';
for m:= j downto 1 do
begin
str(a[m],strvar);
if a[m] > 9 then
change(strvar);
strsum2:= strvar + strsum2;
end;
If holdr = R then
convert:= strsum
else
convert:= strsum + '.' + strsum2;
end;
begin
assign(myfile,'irr.txt');
rewrite(myfile);
phi:= (1 + sqrt(5))/2;
for n:= 1 to 50 do
begin
writeln(myfile,convert(phi/n,10 * phi));
writeln(convert(phi/n,10 * phi));
end;
close(myfile);
readln;
end.
Output:
1.A
0.D176E9295C4A2B813
0.8BC4B21A0FE1D80F
0.68D43FB5B2394F497
0.53D43FB5B2394F497
0.45E3CG0A9D8E572CA
0.3BFC5BA75B5C5C6C5
0.346A373070881E279
0.2EB70B76FE4F3EE2D
0.2A
0.2626A9DB8AB61E5E8
0.22F35D7791CF037F8
0.203A39D8A598DC845
0.1E140E279A182ABD5
0.1C0FBF31B2F86C03
0.1A4C8A120012C50DE
0.18BF2708B66F644BC
0.175B9E9F69BEA9366
0.161DDF8E790E36183
0.15
0.13G0AD87F8284DB9E
0.131354EF520A34904
0.123D9ABDBA7DF03AD
0.1179C788468G134AD
0.10C5D8822668D59A
0.101D3441EBC49531
0.0FB270CBBB66D43D9
0.0F215E37G045B44D
0.0E9D546C22FF18E09
0.0E1F4C9ED61007A6
0.0DAC3ACA6427F61C
0.0D3DB36CG1DEFE77B
0.0CD8AE39579BDC42
0.0C76EC1DFF6C49CEA
0.0C1ACEFDC0198AC3
0.0BC69BCED4285A29
0.0B743F33496B0B53
0.0B26455EBF6C00427
0.0ADF4204063E92F3D
0.0A98E54A2622B10A9
0.0A55FEDEC1D73EDC
0.0A164E6F09C6AA113
0.09DC8A7050G07A5AD
0.09A276F6B0FB7495A
0.096B2C0973497D96
0.093622F7BE262G068
0.0903626AG0263061D
0.08D5B02A762AD692
0.08A711FG1418A153F
0.087A59458301DA43F