Inscribed Circles

Geometry Level 4

Extend the dodecagon to a regular n n -gon. Let n 4 n \geq 4 be a positive integer and 1 j n 1 \leq j \leq n . A circle is inscribed in each congruent isosceles triangle P j 1 O P j P_{j - 1}OP_{j} as shown above. Let C j ( n ) C_{j}(n) be the area of each congruent circle and T j ( n ) T_{j}(n) be the area of each congruent isosceles triangle P j 1 O P j P_{j - 1}OP_{j} .

Let A ( n ) = j = 1 n C j ( n ) \displaystyle A(n) = \sum_{j = 1}^{n} C_{j}(n) . For fixed j j , find lim n A ( n ) T j ( n ) \displaystyle \lim_{n \rightarrow \infty} \dfrac{A(n)}{T_{j}(n)} to eight decimal places.


The answer is 9.86960440.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Otto Bretscher
Jan 21, 2019

Let's make the height of the triangles (based on the sides of the n n -gon) equal to 1 for simplicity. Then the sides of the n n -gon are 2 tan ( π n ) 2\tan\left(\frac{\pi}{n}\right) and the area of the triangles is tan ( π n ) \tan\left(\frac{\pi}{n}\right) . Consider a right triangle with its hypotenuse connecting the center of a circle to an adjacent vertex of the n n -gon to see that the radius of the circles is tan ( π n ) tan ( π 4 π 2 n ) \tan\left(\frac{\pi}{n}\right)\tan\left(\frac{\pi}{4}-\frac{\pi}{2n}\right) .The limit we seek is lim n n π tan 2 ( π n ) tan 2 ( π 4 π 2 n ) tan ( π n ) = π lim n n tan ( π n ) = π 2 9.86960440 \lim_{n \to \infty}\frac{n\pi \tan^2\left(\frac{\pi}{n}\right)\tan^2\left(\frac{\pi}{4}-\frac{\pi}{2n}\right)}{\tan\left(\frac{\pi}{n}\right)}=\pi\lim_{n \to \infty}n \tan\left(\frac{\pi}{n}\right)=\pi^2\approx \boxed{9.86960440}

Chew-Seong Cheong
Jan 18, 2019

A regular n n -gon is formed from n n congruent central isosceles triangles where 2 π n \frac {2\pi}n is the measure of the angle between the equal sides. Let the side length of the equal sides be 1, then the area of the central isosceles triangle, A = 1 2 sin 2 π n A_\triangle = \frac 12 \sin \frac {2\pi}n .

Let M M be the midpoint of the base of the central isosceles triangle P Q PQ ; then P O M = Q O M = π n \angle POM = \angle QOM = \frac \pi n . Let also the center of the circle inscribed in the central isosceles triangle be I I and its radius be r r , and the altitudes from I I to O P OP and O Q OQ be I L IL and I N IN respectively. Then we have:

O M = O I + I M A O cos π n = I L sin π n + I M Note that A O = 1 and cos π n = r sin π n + r I L = I M = r \begin{aligned} OM & = OI + IM \\ AO\cos \frac \pi n & = \frac {IL}{\sin \frac \pi n} + IM & \small \color{#3D99F6} \text{Note that } AO = 1 \text{ and } \\ \cos \frac \pi n & = \frac r{\sin \frac \pi n} + r & \small \color{#3D99F6} IL = IM = r \end{aligned}

r = cos π n 1 sin π n + 1 = sin 2 π n 2 ( 1 + sin π n ) \begin{aligned} \implies r & = \frac {\cos \frac \pi n}{\frac 1{\sin \frac \pi n}+1} = \frac {\sin \frac {2\pi}n}{2 \left(1+\sin \frac \pi n \right)} \end{aligned}

Then the area of the incircle is A = π sin 2 2 π n 4 ( 1 + sin π n ) 2 A_\bigcirc = \dfrac {\pi \sin^2 \frac {2\pi}n}{4 \left(1+\sin \frac \pi n\right)^2} and the required limit:

lim n n A A = lim n n π sin 2 2 π n 4 ( 1 + sin π n ) 2 × 2 sin 2 π n = lim n n π sin 2 π n 2 ( 1 + sin π n ) 2 = lim n π 2 sin 2 π n 2 π n × lim n 1 ( 1 + sin π n ) 2 = π 2 9.86960440 \begin{aligned} \lim_{n \to \infty} \frac {nA_\bigcirc}{A_\triangle} & = \lim_{n \to \infty} \frac {n \pi \sin^2 \frac {2\pi}n}{4 \left(1+\sin \frac \pi n\right)^2} \times \frac 2{\sin \frac {2\pi}n} \\ & = \lim_{n \to \infty} \frac {n \pi \sin \frac {2\pi}n}{2 \left(1+\sin \frac \pi n\right)^2} \\ & = \lim_{n \to \infty} \frac {\pi^2 \sin \frac {2\pi}n}{\frac {2\pi}n} \times \lim_{n \to \infty} \frac 1{\left(1+\sin \frac \pi n\right)^2} \\ & = \pi^2 \approx \boxed{9.86960440} \end{aligned}

X X
Feb 10, 2019

Let O P j = 1 OP_j=1

Notice that lim n n T j ( n ) = π \displaystyle\lim_{n\to\infty}nT_j(n)=\pi (equal to a unit circle)

And A j ( n ) = r I 2 π A_j(n)=r_I^2\pi , r I r_I is the inradius of O P j P j 1 \triangle OP_jP_{j-1}

So r I = 2 T j ( n ) O P j + O P j 1 + P j P j 1 = 2 T j ( n ) 2 + P j P j 1 r_I={2T_j(n)}{OP_j+OP_{j-1}+P_jP_{j-1}}=\frac{2T_j(n)}{2+P_jP_{j-1}}

lim n A ( n ) T j ( n ) \displaystyle\lim_{n\to\infty}\frac{A(n)}{T_j(n)}

= lim n n A j ( n ) T j ( n ) =\displaystyle\lim_{n\to\infty}\frac{nA_j(n)}{T_j(n)}

= lim n n 2 A j ( n ) n T j ( n ) =\displaystyle\lim_{n\to\infty}\frac{n^2A_j(n)}{nT_j(n)}

= lim n n 2 A j ( n ) π =\displaystyle\lim_{n\to\infty}\frac{n^2A_j(n)}{\pi}

= lim n n 2 r I 2 π π =\displaystyle\lim_{n\to\infty}\frac{n^2r_I^2\pi}{\pi}

= lim n ( n r I ) 2 =\displaystyle\lim_{n\to\infty}(nr_I)^2

= lim n ( n 2 T j ( n ) 2 + P j P j 1 ) 2 =\displaystyle\lim_{n\to\infty}(\frac{n2T_j(n)}{2+P_jP_{j-1}})^2

= lim n ( n 2 T j ( n ) 2 + 0 ) 2 =\displaystyle\lim_{n\to\infty}(\frac{n2T_j(n)}{2+0})^2

= lim n ( n T j ( n ) ) 2 =\displaystyle\lim_{n\to\infty}({nT_j(n)})^2

= π 2 =\pi^2

lim n π n ( sin ( 2 π n ) 2 ( sin ( π n ) + 1 ) ) 2 1 2 sin ( 2 π n ) π 2 \underset{n\to \infty }{\text{lim}}\frac{\pi n \left(\frac{\sin \left(\frac{2 \pi }{n}\right)}{2 \left(\sin \left(\frac{\pi }{n}\right)+1\right)}\right)^2}{\frac{1}{2} \sin \left(\frac{2 \pi }{n}\right)} \Longrightarrow \pi^2

Rocco Dalto
Jan 18, 2019

x 2 = r sin ( π n ) h = r cos ( π n ) T j ( n ) = 1 2 sin ( 2 π n ) r 2 \dfrac{x}{2} = r\sin(\dfrac{\pi}{n}) \implies h = r\cos(\dfrac{\pi}{n}) \implies T_{j}(n) = \dfrac{1}{2}\sin(\dfrac{2\pi}{n})r^2 for each triangle P j 1 O P j P_{j - 1}OP_{j} .

and,

T j ( n ) = r R + 1 2 x R = R 2 ( 2 r + x ) R = 2 T j ( n ) 2 r + x = T_{j}(n) = rR + \dfrac{1}{2}xR = \dfrac{R}{2}(2r + x) \implies R = \dfrac{2T_{j}(n)}{2r + x} = sin ( 2 π n ) r 2 2 r + 2 r sin ( π n ) ) = sin ( 2 π n ) r 2 ( 1 + sin ( π n ) ) \dfrac{\sin(\dfrac{2\pi}{n})r^2}{2r + 2r\sin(\dfrac{\pi}{n}))} = \dfrac{\sin(\dfrac{2\pi}{n})r}{2(1 + \sin(\dfrac{\pi}{n}))}

C j ( n ) = π sin 2 ( 2 π n ) r 2 4 ( 1 + sin ( π n ) ) 2 \implies C_{j}(n) = \dfrac{\pi\sin^2(\dfrac{2\pi}{n})r^2}{4(1 + \sin(\dfrac{\pi}{n}))^2}

A ( n ) = π 2 ( n 2 sin 2 ( 2 π n ) r 2 ) ( 1 + sin ( π n ) ) 2 \implies A(n) = \dfrac{\dfrac{\pi}{2}(\dfrac{n}{2}\sin^2(\dfrac{2\pi}{n})r^2)}{(1 + \sin(\dfrac{\pi}{n}))^2}

and,

For fixed j j we have: A ( n ) T j ( n ) = π ( n 2 sin ( 2 π n ) ) ( 1 + sin ( π n ) ) 2 \dfrac{A(n)}{T_{j}(n)} = \dfrac{\pi(\dfrac{n}{2}\sin(\dfrac{2\pi}{n}))}{(1 + \sin(\dfrac{\pi}{n}))^2} .

lim n ( 1 + sin ( π n ) ) 2 = 1 \lim_{n \rightarrow \infty} (1 + \sin(\dfrac{\pi}{n}))^2 = 1

and,

For π lim n n 2 sin ( 2 π n ) \pi\lim_{n \rightarrow \infty} \dfrac{n}{2}\sin(\dfrac{2\pi}{n}) :

Using the inequality: cos ( x ) < sin ( x ) x < 1 cos ( 2 π n ) < sin ( 2 π n ) 2 π n < 1 π cos ( 2 π n ) < n 2 sin ( 2 π n ) < π \cos(x) < \dfrac{\sin(x)}{x} < 1 \implies \cos(\dfrac{2\pi}{n}) < \dfrac{\sin(\dfrac{2\pi}{n})}{\dfrac{2\pi}{n}} < 1 \implies\pi\cos(\dfrac{2\pi}{n}) < \dfrac{n}{2}\sin(\dfrac{2\pi}{n}) < \pi

and π lim n cos ( 2 π n ) = π π lim n n 2 sin ( 2 π n ) = π π = π 2 \pi\lim_{n \rightarrow \infty} \cos(\dfrac{2\pi}{n}) = \pi \implies \pi\lim_{n \rightarrow \infty} \dfrac{n}{2}\sin(\dfrac{2\pi}{n}) = \pi * \pi = \pi^2

lim n A ( n ) T j ( n ) = π 2 9.86960440 \implies \lim_{n \rightarrow \infty} \dfrac{A(n)}{T_{j}(n)} = \boxed{\pi^2 \approx 9.86960440} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...