It's All Limacons

Calculus Level 4

.

Let ( 0 a 3 ) (0 \leq a \leq 3) .

Find the value of a a for which the area A A of the region inside the outer loop but outside the inner loop of r = a ( 1 + 2 cos ( θ ) ) r = \sqrt{a}(1 + 2\cos(\theta)) is A = a 2 + 27 + 6 3 π 4 A = a^2 + \dfrac{27 + 6\sqrt{3}\pi}{4} .

Express the value of a a to eight decimal places.


The answer is 2.59807621.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jul 3, 2018

For half the outer loop: r = a ( 1 + 2 cos ( θ ) ) r = \sqrt{a}(1 + 2\cos(\theta)) ( 0 θ 2 π 3 ) (0 \leq \theta \leq \dfrac{2\pi}{3}) .

Let A 1 A_{1} be the area of the outerloop A 1 = a 0 2 π 3 ( 1 + 2 cos ( 2 θ ) ) 2 d θ = a 0 2 π 3 ( 3 + 4 cos ( θ ) + 2 cos ( 2 θ ) ) d θ = \implies A_{1} = a\int_{0}^{\dfrac{2\pi}{3}} (1 + 2\cos(2\theta))^2 d\theta = a\int_{0}^{\dfrac{2\pi}{3}} (3 + 4\cos(\theta) + 2\cos(2\theta)) d\theta = a ( 3 θ + 4 sin ( θ ) + sin ( 2 θ ) ) 0 2 π 3 = a ( 2 π + 2 3 3 2 ) a(3\theta + 4\sin(\theta) + \sin(2\theta))|_{0}^{\dfrac{2\pi}{3}} = a(2\pi + 2\sqrt{3} - \dfrac{\sqrt{3}}{2}) .

For half the inner loop: r = a ( 1 + 2 cos ( θ ) ) r = \sqrt{a}(1 + 2\cos(\theta)) ( 2 π 3 θ π ) (\dfrac{2\pi}{3} \leq \theta \leq \pi) .

Let A 2 A_{2} be the area of the inner loop A 2 = a 2 π 3 π ( 1 + 2 cos ( 2 θ ) ) 2 d θ = a ( π 2 3 + 3 2 ) \implies A_{2} = a\int_{\dfrac{2\pi}{3}}^{\pi} (1 + 2\cos(2\theta))^2 d\theta = a(\pi - 2\sqrt{3} + \dfrac{\sqrt{3}}{2})

A = A 1 A 2 = a ( π + 3 3 ) = a 2 + 27 + 6 3 π 4 \implies A = A_{1} - A_{2} = a(\pi + 3\sqrt{3}) = a^2 + \dfrac{27 + 6\sqrt{3}\pi}{4} \implies a 2 ( π + 3 3 ) a + 27 + 6 3 π 4 = 0 a^2 - (\pi + 3\sqrt{3})a + \dfrac{27 + 6\sqrt{3}\pi}{4} = 0 \implies a = π + 3 3 ± π 2 a = 2 π + 3 3 2 a = \dfrac{\pi + 3\sqrt{3} \pm \pi}{2} \implies a = \dfrac{2\pi + 3\sqrt{3}}{2} or a = 3 3 2 a = \dfrac{3\sqrt{3}}{2}

( 0 a 3 ) a = 3 3 2 2.59807621 (0 \leq a \leq 3) \implies a = \dfrac{3\sqrt{3}}{2} \approx \boxed{2.59807621} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...