It's All Ratios!

Level pending

In square A B C D , E ABCD, E is a point on B C , F \overline{BC}, F is a point on C D \overline{CD} and A F \overline{AF} is an angle bisector of E A D \angle{EAD} .

Find: A F 2 F D A E \dfrac{\overline{AF}^2}{\overline{FD} * \overline{AE}} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
Feb 19, 2021

Let θ = E A F = F A D \theta = \angle EAF = \angle FAD . Then by alternate interior angles of parallel lines, B E A = 2 θ \angle BEA = 2\theta .

From A D F \triangle ADF , F D = tan θ FD = \tan \theta and A F = sec θ AF = \sec \theta .

From A B E \triangle ABE , A E = csc 2 θ AE = \csc 2\theta .

Therefore, A F 2 F D A E = sec 2 θ tan θ csc 2 θ = 1 cos 2 θ sin θ cos θ 1 2 sin θ cos θ = 2 \cfrac{AF^2}{FD \cdot AE} = \cfrac{\sec^2 \theta}{\tan \theta \cdot \csc 2\theta} = \cfrac{\frac{1}{\cos^2 \theta}}{\frac{\sin \theta}{\cos \theta} \cdot \frac{1}{2 \sin \theta \cos \theta}} = \boxed{2} .

Rocco Dalto
Feb 18, 2021

tan ( 2 θ ) = x a \tan(2\theta) = \dfrac{x}{a} and tan ( θ ) = b x \tan(\theta) = \dfrac{b}{x} \implies x a = tan ( 2 θ ) = 2 tan ( θ ) 1 tan 2 ( θ ) = 2 b x x 2 b 2 \dfrac{x}{a} = \tan(2\theta) = \dfrac{2\tan(\theta)}{1 - \tan^2(\theta)} = \dfrac{2bx}{x^2 - b^2}

2 a b = x 2 b 2 x 2 = b 2 + 2 a b = ( b + a ) 2 a 2 A E = b + a \implies 2ab = x^2 - b^2 \implies x^2 = b^2 + 2ab = (b + a)^2 - a^2 \implies \overline{AE} = b + a

and

A F 2 = ( a + b ) 2 a 2 + b 2 = ( a + b ) 2 ( a b ) ( a + b ) = 2 ( a + b ) ( b ) = \overline{AF}^2 = (a + b)^2 - a^2 + b^2 = (a + b)^2 - (a - b)(a + b) = 2(a + b)(b) =

2 ( A E ) ( F D ) A F 2 F D A E = 2 2 * (\overline{AE}) * (\overline{FD}) \implies \dfrac{\overline{AF}^2}{\overline{FD} * \overline{AE}} = \boxed{2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...