It's All Squares 3 !

Level pending

In equilateral A B C \triangle{ABC} with side length 1 1 , extend the stacked inscribed squares to an infinite number of squares.

Let a 1 a_{1} be a side of the initial square(largest square) and S S the total area of all the squares.

If S a 1 = α β \dfrac{S}{a_{1}} = \dfrac{\sqrt{\alpha}}{\beta} , where α \alpha and β \beta are coprime positive integers, find α + β \alpha + \beta .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Oct 1, 2020

2 a 1 1 a 1 = tan ( 6 0 ) = 3 a 1 = 3 2 + 3 \dfrac{2a_{1}}{1 - a_{1}} = \tan(60^{\circ}) = \sqrt{3} \implies a_{1} = \dfrac{\sqrt{3}}{2 + \sqrt{3}}

and

2 a 2 a 1 a 2 = tan ( 6 0 ) = 3 a 2 = 3 a 1 2 + 3 = ( 3 2 + 3 ) 2 \dfrac{2a_{2}}{a_{1} - a_{2}} = \tan(60^{\circ}) = \sqrt{3} \implies a_{2} = \dfrac{\sqrt{3}a_{1}}{2 + \sqrt{3}} = (\dfrac{\sqrt{3}}{2 + \sqrt{3}})^2

2 a 3 a 2 a 3 = 3 a 3 = 3 a 2 2 + 3 = ( 3 2 + 3 ) 3 \dfrac{2a_{3}}{a_{2} - a_{3}} = \sqrt{3} \implies a_{3} = \dfrac{\sqrt{3}a_{2}}{2 + \sqrt{3}} = (\dfrac{\sqrt{3}}{2 + \sqrt{3}})^3

In General for each positive integer n n we have: a n = ( 3 2 + 3 ) n a_{n} = (\dfrac{\sqrt{3}}{2 + \sqrt{3}})^n

\implies

S = n = 1 a n 2 = ( 3 2 + 3 ) 2 ( 2 + 3 2 ) = S = \sum_{n = 1}^{\infty} a_{n}^2 = (\dfrac{\sqrt{3}}{2 + \sqrt{3}})^2(\dfrac{2 + \sqrt{3}}{2}) =

3 2 ( 1 2 + 3 ) = 3 2 ( 3 2 + 3 ) = \dfrac{3}{2}(\dfrac{1}{2 + \sqrt{3}}) = \dfrac{\sqrt{3}}{2}(\dfrac{\sqrt{3}}{2 + \sqrt{3}}) =

3 2 a 1 = h e i g h t A B C a 1 \dfrac{\sqrt{3}}{2}a_{1} = height_{\triangle{ABC}} * a_{1} \implies S a 1 = h e i g h t A B C = 3 2 = α β \dfrac{S}{a_{1}} = height_{\triangle{ABC}} = \dfrac{\sqrt{3}}{2} = \dfrac{\alpha}{\beta}

α + β = 5 \implies \alpha + \beta = \boxed{5} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...