It's All Stars 2.

Calculus Level 5

Let n 6 n \geq 6 be a fixed even positive integer and extend the above hexagrams to n n grams.

For each positive integer m m , let P m P_{m} be the n n gram inscribed in the circle C m C_{m} and C m + 1 C_{m + 1} be the circle inscribed in the n n gram P m P_{m} .

Let A c ( m ) A_{c}(m) be the area of each circle C m C_{m} and A p ( m ) A_{p}(m) be the area of each n n gram P m P_{m} and let A c ( n ) = m = 1 A c ( m ) A_{c}(n) = \sum_{m = 1}^{\infty} A_{c}(m) and A c = lim n A c ( n ) A_{c} = \lim_{n \rightarrow \infty} A_{c}(n) and let A p ( n ) = m = 1 A p ( m ) A_{p}(n) = \sum_{m = 1}^{\infty} A_{p}(m) and A p = lim n A p ( n ) A_{p} = \lim_{n \rightarrow \infty} A_{p}(n) .

If A c A p A c ( 1 ) 2 = a b \dfrac{A_{c} * A_{p}}{A_{c}(1)^2} = \dfrac{a}{b} , where a a and b b are coprime positive integers, find a + b a + b .

Refer to previous problem for n n odd:


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Feb 4, 2019

Let n 6 n \geq 6 be an even positive integer.

Note: This is simpler to type then using 2 n + 4 2n + 4 for each positive integer n n .

r 1 2 = r 2 cos ( π n ) ) r 2 = r 1 2 cos ( π n ) \dfrac{r_{1}}{2} = r_{2}\cos(\dfrac{\pi}{n})) \implies r_{2} = \dfrac{r_{1}}{2\cos(\dfrac{\pi}{n})} h 1 = r 1 2 tan ( π n ) h 2 = 1 2 tan ( π n ) r 2 = \implies h_{1} = \dfrac{r_{1}}{2}\tan(\dfrac{\pi}{n}) \implies h_{2} =\dfrac{1}{2}\tan(\dfrac{\pi}{n})r_{2} = 1 2 tan ( π n ) ( 1 2 cos ( π n ) ) r 1 \dfrac{1}{2}\tan(\dfrac{\pi}{n})(\dfrac{1}{2\cos(\dfrac{\pi}{n})}) r_{1} and r 3 = 1 2 cos ( π n ) r 2 = ( 1 2 cos ( π n ) ) 2 r 1 h 3 = h 2 = 1 2 tan ( π n ) r 3 = r_{3} = \dfrac{1}{2\cos(\dfrac{\pi}{n})}r_{2} = (\dfrac{1}{2\cos(\dfrac{\pi}{n})})^{2}r_{1} \implies h_{3} = h_{2} =\dfrac{1}{2}\tan(\dfrac{\pi}{n})r_{3} = 1 2 tan ( π n ) ( 1 2 cos ( π n ) ) 2 r 1 \dfrac{1}{2}\tan(\dfrac{\pi}{n})(\dfrac{1}{2\cos(\dfrac{\pi}{n})})^{2} r_{1}

In General:

r m = ( 1 2 cos ( π n ) ) m 1 r 1 r_{m} = (\dfrac{1}{2\cos(\dfrac{\pi}{n})})^{m - 1}r_{1} and h m = 1 2 tan ( π n ) ( 1 2 cos ( π n ) ) m 1 r 1 h_{m} = \dfrac{1}{2}\tan(\dfrac{\pi}{n})(\dfrac{1}{2\cos(\dfrac{\pi}{n})})^{m - 1} r_{1}

A c ( m ) = π ( 1 4 cos 2 ( π n ) ) m 1 r 1 2 A c ( n ) = m = 1 A c ( m ) = ( 4 cos 2 ( π n ) 4 cos 2 ( π n ) 1 ) A c ( 1 ) A_{c}(m) = \pi(\dfrac{1}{4\cos^2(\dfrac{\pi}{n})})^{m - 1}r_{1}^2 \implies A_{c}(n) = \sum_{m = 1}^{\infty} A_{c}(m) = (\dfrac{4\cos^2(\dfrac{\pi}{n})}{4\cos^2(\dfrac{\pi}{n}) - 1}) A_{c}(1)

and lim n A c ( n ) = 4 3 A c ( 1 ) \lim_{n \rightarrow \infty} A_{c}(n) = \dfrac{4}{3}A_{c}(1) .

and A p ( m ) = ( 2 n ) ( 1 2 ( 1 2 tan ( π n ) ) ( 1 4 cos 2 ( π n ) ) m 1 r 1 2 A_{p}(m) = (2n)(\dfrac{1}{2}(\dfrac{1}{2}\tan(\dfrac{\pi}{n}))(\dfrac{1}{4\cos^2(\dfrac{\pi}{n})})^{m - 1}r_{1}^2 = n 2 tan ( π n ) ( 1 4 cos 2 ( π n ) ) m 1 r 1 2 = \dfrac{n}{2}\tan(\dfrac{\pi}{n})(\dfrac{1}{4\cos^2(\dfrac{\pi}{n})})^{m - 1}r_{1}^2

A p ( n ) = m = 1 A p ( m ) = n 2 tan ( π n ) ( 4 cos 2 ( π n ) 4 cos 2 ( π n ) 1 ) r 1 2 \implies A_{p}(n) = \sum_{m = 1}^{\infty} A_{p}(m) = \dfrac{n}{2}\tan(\dfrac{\pi}{n})(\dfrac{4\cos^2(\dfrac{\pi}{n})}{4\cos^2(\dfrac{\pi}{n}) - 1})r_{1}^2

Let t n = n 2 tan ( π n ) t_{n} = \dfrac{n}{2}\tan(\dfrac{\pi}{n}) and S n = 4 cos 2 ( π n ) 4 cos 2 ( π n ) 1 S_{n} = \dfrac{4\cos^2(\dfrac{\pi}{n})}{4\cos^2(\dfrac{\pi}{n}) - 1}

lim n S n = 4 3 \lim_{n \rightarrow \infty} S_{n} = \dfrac{4}{3}

For lim n t n \lim_{n \rightarrow \infty} t_{n} :

Using the inequality cos ( x ) < sin ( x ) x < 1 π < n sin ( π n ) < π π < n tan ( π n ) < π sec ( π n ) \cos(x) < \dfrac{\sin(x)}{x} < 1 \implies \pi < n\sin(\dfrac{\pi}{n}) < \pi \implies \pi < n\tan(\dfrac{\pi}{n}) < \pi\sec(\dfrac{\pi}{n}) and π lim n sec ( π n ) = π lim n t n = π 2 \pi\lim_{n \rightarrow \infty} \sec(\dfrac{\pi}{n}) = \pi \implies \lim_{n \rightarrow \infty} t_{n} = \dfrac{\pi}{2}

A p = r 1 2 lim n S n t n = ( 4 3 ) ( π 2 ) r 1 2 = 2 3 π r 1 2 = 2 3 A c ( 1 ) \implies A_{p} = r_{1}^2\lim_{n \rightarrow \infty} S_{n} * t_{n} = (\dfrac{4}{3})(\dfrac{\pi}{2})r_{1}^2 = \dfrac{2}{3}\pi r_{1}^2 = \dfrac{2}{3} A_{c}(1)

A c A p A c ( 1 ) 2 = ( 4 3 ) ( 2 3 ) = 8 9 = a b a + b = 17 \implies \dfrac{A_{c} * A_{p}}{A_{c}(1)^2} = (\dfrac{4}{3})(\dfrac{2}{3}) = \dfrac{8}{9} = \dfrac{a}{b} \implies a + b = \boxed{17} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...