Let n ≥ 6 be a fixed even positive integer and extend the above hexagrams to n grams.
For each positive integer m , let P m be the n gram inscribed in the circle C m and C m + 1 be the circle inscribed in the n gram P m .
Let A c ( m ) be the area of each circle C m and A p ( m ) be the area of each n gram P m and let A c ( n ) = ∑ m = 1 ∞ A c ( m ) and A c = lim n → ∞ A c ( n ) and let A p ( n ) = ∑ m = 1 ∞ A p ( m ) and A p = lim n → ∞ A p ( n ) .
If A c ( 1 ) 2 A c ∗ A p = b a , where a and b are coprime positive integers, find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Let n ≥ 6 be an even positive integer.
Note: This is simpler to type then using 2 n + 4 for each positive integer n .
2 r 1 = r 2 cos ( n π ) ) ⟹ r 2 = 2 cos ( n π ) r 1 ⟹ h 1 = 2 r 1 tan ( n π ) ⟹ h 2 = 2 1 tan ( n π ) r 2 = 2 1 tan ( n π ) ( 2 cos ( n π ) 1 ) r 1 and r 3 = 2 cos ( n π ) 1 r 2 = ( 2 cos ( n π ) 1 ) 2 r 1 ⟹ h 3 = h 2 = 2 1 tan ( n π ) r 3 = 2 1 tan ( n π ) ( 2 cos ( n π ) 1 ) 2 r 1
In General:
r m = ( 2 cos ( n π ) 1 ) m − 1 r 1 and h m = 2 1 tan ( n π ) ( 2 cos ( n π ) 1 ) m − 1 r 1
A c ( m ) = π ( 4 cos 2 ( n π ) 1 ) m − 1 r 1 2 ⟹ A c ( n ) = ∑ m = 1 ∞ A c ( m ) = ( 4 cos 2 ( n π ) − 1 4 cos 2 ( n π ) ) A c ( 1 )
and lim n → ∞ A c ( n ) = 3 4 A c ( 1 ) .
and A p ( m ) = ( 2 n ) ( 2 1 ( 2 1 tan ( n π ) ) ( 4 cos 2 ( n π ) 1 ) m − 1 r 1 2 = 2 n tan ( n π ) ( 4 cos 2 ( n π ) 1 ) m − 1 r 1 2
⟹ A p ( n ) = ∑ m = 1 ∞ A p ( m ) = 2 n tan ( n π ) ( 4 cos 2 ( n π ) − 1 4 cos 2 ( n π ) ) r 1 2
Let t n = 2 n tan ( n π ) and S n = 4 cos 2 ( n π ) − 1 4 cos 2 ( n π )
lim n → ∞ S n = 3 4
For lim n → ∞ t n :
Using the inequality cos ( x ) < x sin ( x ) < 1 ⟹ π < n sin ( n π ) < π ⟹ π < n tan ( n π ) < π sec ( n π ) and π lim n → ∞ sec ( n π ) = π ⟹ lim n → ∞ t n = 2 π
⟹ A p = r 1 2 lim n → ∞ S n ∗ t n = ( 3 4 ) ( 2 π ) r 1 2 = 3 2 π r 1 2 = 3 2 A c ( 1 )
⟹ A c ( 1 ) 2 A c ∗ A p = ( 3 4 ) ( 3 2 ) = 9 8 = b a ⟹ a + b = 1 7 .