It's All Tangents!

Geometry Level 4

The three congruent circles C 1 , C 2 C_{1}, C_{2} and C 3 C_{3} each have radius r r and are tangent to each other as shown above. A B \overline{AB} is tangent to C 1 C_{1} at point A A , B C \overline{BC} is tangent to C 2 C_{2} at point B B and A C \overline{AC} is tangent to C 3 C_{3} at point C C and A B C \triangle{ABC} formed is an equilateral triangle.

If A A B C r 2 = a b ( c + d ) \dfrac{A_{\triangle{ABC}}}{r^2} = \dfrac{\sqrt{a}}{b}(c + \sqrt{d}) , where a , b , c a,b,c and d d are coprime positive integers, find a + b + c + d a + b + c + d .


The answer is 37.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Rocco Dalto
Dec 2, 2020

Extend radii O B \overline{OB} and C P \overline{CP} so that O B \overrightarrow{\rm OB} and C P \overrightarrow{\rm CP} intersect at D D .

B C \overline{BC} is tangent to circle C 2 C_{2} at B O B C B \implies \angle{OBC} and D B C \angle{DBC} are right angles D B C \implies \triangle{DBC} is a right triangle and A C \overline{AC} is tangent to circle C 3 C_{3} at C D C A C \implies \angle{DCA} is a right angle and A B C \triangle{ABC} is an equilateral triangle m B C A = 6 0 m D C B = 3 0 D B C \implies m\angle{BCA} = 60^{\circ} \implies m\angle{DCB} = 30^{\circ} \implies \triangle{DBC} is a 30 60 90 30 - 60 - 90 right triangle.

Let D B = x B C = 3 x \overline{DB} = x \implies \overline{BC} = \sqrt{3}x and C D = 2 x \overline{CD} = 2x

C 2 C_{2} and C 3 C_{3} are tangent to each other as shown above O P = 2 r \implies \overline{OP} = 2r and each radii O B = P C = r P D = 2 x r \overline{OB} = \overline{PC} = r \implies \overline{PD} = 2x - r and O D = x + r \overline{OD} = x + r .

Using the law of cosines on D O P \triangle{DOP} formed we have:

4 r 2 = ( 2 x r ) 2 + ( x + r ) 2 2 ( 2 x r ) ( x + r ) cos ( 6 0 ) = 3 x 2 3 r x + 3 r 2 3 x 2 3 r x r 2 = 0 4r^2 = (2x - r)^2 + (x + r)^2 - 2(2x - r)(x + r)\cos(60^{\circ}) = 3x^2 - 3rx + 3r^2 \implies 3x^2 - 3rx - r^2 = 0 \implies

x = 3 + 21 6 r x = \dfrac{3 + \sqrt{21}}{6}r dropping the negative root

B C = 3 x = 3 + 21 2 3 r \implies \overline{BC} = \sqrt{3}x = \dfrac{3 + \sqrt{21}}{2\sqrt{3}}r \implies the area of isosceles A B C \triangle{ABC} is

A A B C = 3 4 ( 3 + 21 2 3 ) 2 r 2 = A_{\triangle{ABC}} = \dfrac{\sqrt{3}}{4}(\dfrac{3 + \sqrt{21}}{2\sqrt{3}})^2 r^2 = 3 8 ( 5 + 21 ) r 2 \dfrac{\sqrt{3}}{8}(5 + \sqrt{21})r^2 \implies

A A B C r 2 = 3 8 ( 5 + 21 ) = a b ( c + d ) \dfrac{A_{\triangle{ABC}}}{r^2} = \dfrac{\sqrt{3}}{8}(5 + \sqrt{21}) = \dfrac{\sqrt{a}}{b}(c + \sqrt{d}) a + b + c + d = 37 \implies a + b + c + d = \boxed{37} .

Fine problem. There are two variants of solution.

See pictures

Yuriy Kazakov - 6 months, 1 week ago
David Vreken
Dec 5, 2020

Label the diagram as follows, with r = C D = D E r = CD = DE :

Since D F E = 60 ° \angle DFE = 60° , D E F = 90 ° \angle DEF = 90° , and D E = r DE = r , D F = D E sin 60 ° = 2 3 3 r DF = \frac{DE}{\sin 60°} = \frac{2\sqrt{3}}{3}r .

Since F C A = 30 ° \angle FCA = 30° and D C A = 90 ° \angle DCA = 90° , D C F = D C A F C A = 90 ° 30 ° = 60 ° \angle DCF = \angle DCA - \angle FCA = 90° - 30° = 60° .

By the law of cosines on C D F \triangle CDF , D F 2 = C D 2 + C F 2 2 C D C F cos D C F DF^2 = CD^2 + CF^2 - 2 \cdot CD \cdot CF \cdot \cos \angle DCF , or ( 2 3 3 r ) 2 = r 2 + C F 2 2 r C F cos 60 ° (\frac{2\sqrt{3}}{3}r)^2 = r^2 + CF^2 - 2 \cdot r \cdot CF \cdot \cos 60° , which solves to C F = ( 1 2 + 21 6 ) r CF = (\frac{1}{2} + \frac{\sqrt{21}}{6})r for C F > 0 CF > 0 .

The area of A B C \triangle ABC is then A A B C = 3 A C F A = 3 1 2 C F 2 sin 120 ° = 3 1 2 ( 1 2 + 21 6 ) 2 r 2 3 2 = 3 8 ( 5 + 21 ) r 2 A_{\triangle ABC} = 3 \cdot A_{\triangle CFA} = 3 \cdot \frac{1}{2} \cdot CF^2 \cdot \sin 120° = 3 \cdot \frac{1}{2} \cdot (\frac{1}{2} + \frac{\sqrt{21}}{6})^2r^2 \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{8}(5 + \sqrt{21})r^2 .

Therefore, a = 3 a = 3 , b = 8 b = 8 , c = 5 c = 5 , d = 21 d = 21 , and a + b + c + d = 37 a + b + c + d = \boxed{37} .

Denote by O 1 {{O}_{1}} , O 2 {{O}_{2}} and O 3 {{O}_{3}} the centers of circles C 1 {{C}_{1}} , C 2 {{C}_{2}} and C 3 {{C}_{3}} respectively. These three points form an equilateral triangle. Let D D be the point of intersection of B C BC and O 2 O 3 {{O}_{2}} {{O}_{3}} . Let E E be the point of intersection of A B AB and O 1 O 2 {{O}_{1}} {{O}_{2}} . Let F F be the point of intersection of A B AB and O 2 O 3 {{O}_{2}} {{O}_{3}} . Let G G be the point of intersection of B C BC and O 1 O 3 {{O}_{1}} {{O}_{3}} , as shown on the figure.

Since D B E \angle DBE = D O 2 E \angle D{{O}_{2}}E =60{}^\circ), points B B , D D , E E and O 2 {{O}_{2}} are concyclic. B C BC is tangent to C 2 {{C}_{2}} , thus O 2 B D = 90 \angle {{O}_{2}}BD=90{}^\circ and hence, O 2 E D = 180 O 2 B D = 90 \angle {{O}_{2}}ED=180{}^\circ-\angle {{O}_{2}}BD=90{}^\circ .

This means that O 2 D E \triangle {{O}_{2}}DE is a 90 90{}^\circ - 60 60{}^\circ - 30 30{}^\circ triangle, therefore, O 2 D = 2 O 2 E {{O}_{2}}D=2 {{O}_{2}}E .

Due to the threefold symmetry of the compound shape of the two equilateral triangles, segments O 2 E {{O}_{2}}E and O 3 D {{O}_{3}}D are congruent. Let O 2 E = O 3 D = y {{O}_{2}}E={{O}_{3}}D=y . Then O 2 D = 2 y {{O}_{2}}D=2y , so we have O 2 O 3 = O 2 D + D O 3 2 r = 2 y + y y = 2 r 3 {{O}_{2}}{{O}_{3}}={{O}_{2}}D+D{{O}_{3}}\Rightarrow 2r=2y+y\Rightarrow y=\frac{2r}{3} Using Pythagorean theorem on O 2 D E \triangle {{O}_{2}}DE

D E 2 = O 2 D 2 O 2 E 2 = ( 2 y ) 2 y 2 = 3 y 2 D E = y 3 D E = 2 r 3 D{{E}^{2}}={{O}_{2}}{{D}^{2}}-{{O}_{2}}{{E}^{2}}={{\left( 2y \right)}^{2}}-{{y}^{2}}=3{{y}^{2}}\Rightarrow DE=y\sqrt{3}\Rightarrow DE=\frac{2r}{\sqrt{3}} Again, because of the symmetry, ( B D , A E ) \left( BD,\ AE \right) , ( D G , E F ) \left( DG,\ EF \right) and ( G C , B F ) \left( GC,\ BF \right) are pairs of congruent segments. Label B D BD , A E AE by k k , D G DG , E F EF by l l and G C GC , B F BF by m m .

By Pythagorean theorem on O 2 B D \triangle {{O}_{2}}BD

B D 2 + O 2 B 2 = O 2 D 2 k 2 + r 2 = ( 2 y ) 2 k 2 + r 2 = 16 r 2 9 k = r 7 3 ( 1 ) \begin{aligned} B{{D}^{2}}+{{O}_{2}}{{B}^{2}}={{O}_{2}}{{D}^{2}} & \Rightarrow {{k}^{2}}+{{r}^{2}}={{\left( 2y \right)}^{2}} \\ & \Rightarrow {{k}^{2}}+{{r}^{2}}=\frac{16{{r}^{2}}}{9} \\ & \Rightarrow k=\frac{r\sqrt{7}}{3} \ \ \ \ \ (1)\\ \end{aligned}

From the similarity of triangles O 2 E F \triangle {{O}_{2}}EF and B D F \triangle BDF we get

O 2 F B F = O 2 E B D x m = y k = ( 1 ) 2 r 3 r 7 3 = 2 7 x = 2 m 7 ( 2 ) \dfrac{{{O}_{2}}F}{BF}=\dfrac{{{O}_{2}}E}{BD}\Rightarrow \dfrac{x}{m}=\dfrac{y}{k}\overset{\left( 1 \right)}{\mathop{=}}\,\dfrac{\frac{2r}{3}}{\frac{r\sqrt{7}}{3}}=\dfrac{2}{\sqrt{7}}\Rightarrow x=\dfrac{2m}{\sqrt{7}} \ \ \ \ \ (2) Likewise, from the similarity of triangles O 2 B F \triangle {{O}_{2}}BF and E D F \triangle EDF we have

O 2 F E F = B F D F = O 2 B D E x l = m 3 r 3 x = r 2 r 3 3 = 3 2 { x = 3 2 l ( 3 ) 0 l m = x ( 3 r 3 x ) ( 4 ) \dfrac{{{O}_{2}}F}{EF}=\dfrac{BF}{DF}=\dfrac{{{O}_{2}}B}{DE}\Rightarrow \dfrac{x}{l}=\dfrac{m}{\dfrac{3r}{3}-x}=\dfrac{r}{\dfrac{2r\sqrt{3}}{3}}=\dfrac{\sqrt{3}}{2}\Rightarrow \left\{ \begin{matrix} x=\dfrac{\sqrt{3}}{2}l \ \ \ \ \ (3) \\ \phantom{0} \\ lm=x\left( \dfrac{3r}{3}-x \right) \ \ \ \ \ (4) \\ \end{matrix} \right.

( 2 ) , ( 3 ) x 2 = 3 7 l m ( 4 ) x 2 = 3 7 x ( 4 r 3 x ) x 0 x = 3 7 ( 4 r 3 x ) \left( 2 \right),\left( 3 \right)\Rightarrow {{x}^{2}}=\dfrac{\sqrt{3}}{\sqrt{7}}lm\overset{\left( 4 \right)}{\mathop{\Rightarrow }}\,{{x}^{2}}=\dfrac{\sqrt{3}}{\sqrt{7}}x\left( \dfrac{4r}{3}-x \right)\overset{x\ne 0}{\mathop{\Rightarrow }}\,x=\dfrac{\sqrt{3}}{\sqrt{7}}\left( \dfrac{4r}{3}-x \right) which solves to x = 21 3 3 r ( 5 ) x=\frac{\sqrt{21}-3}{3}r \ \ \ \ \ (5) Now,

( 2 ) ( 5 ) m = 7 2 21 3 3 r m = 7 3 3 7 6 r ( 6 ) \left( 2 \right)\overset{\left( 5 \right)}{\mathop{\Rightarrow }}\,m=\dfrac{\sqrt{7}}{2}\cdot ~\dfrac{\sqrt{21}-3}{3}r\Rightarrow m=\dfrac{7\sqrt{3}-3\sqrt{7}}{6}r \ \ \ \ \ (6)

( 3 ) ( 5 ) l = 2 3 21 3 3 r l = 2 3 ( 7 3 ) r ( 7 ) \left( 3 \right)\overset{\left( 5 \right)}{\mathop{\Rightarrow }}\,l=\dfrac{2}{\sqrt{3}}\cdot ~\dfrac{\sqrt{21}-3}{3}r\Rightarrow l=\dfrac{2}{3}\left( \sqrt{7}-\sqrt{3} \right)r \ \ \ \ \ (7)

Calculating the length of the side of the red triangle,

( 1 ) , ( 6 ) , ( 7 ) B C = k + l + m = 7 3 r + 2 3 ( 7 3 ) r + 7 3 3 7 6 r B C = 7 + 3 2 r \left( 1 \right),\left( 6 \right),\left( 7 \right)\Rightarrow BC=k+l+m=\dfrac{\sqrt{7}}{3}r+\dfrac{2}{3}\left( \sqrt{7}-\sqrt{3} \right)r+\dfrac{7\sqrt{3}-3\sqrt{7}}{6}r\Rightarrow BC=\dfrac{\sqrt{7}+\sqrt{3}}{2}r Finally,

A A B C = 3 4 B C 2 = 3 4 ( 7 + 3 2 ) 2 r 2 = 3 8 ( 5 + 21 ) r 2 A A B C r 2 = 3 8 ( 5 + 21 ) \begin{aligned} & {{A}_{ \triangle ABC}}=\dfrac{\sqrt{3}}{4}B{{C}^{2}}=\dfrac{\sqrt{3}}{4}{{\left( \dfrac{\sqrt{7}+\sqrt{3}}{2} \right)}^{2}}{{r}^{2}}=\dfrac{\sqrt{3}}{8}\left( 5+\sqrt{21} \right){{r}^{2}} \\ & \Rightarrow \dfrac{{{A}_{\triangle ABC}}}{{{r}^{2}}}=\dfrac{\sqrt{3}}{8}\left( 5+\sqrt{21} \right) \\ \end{aligned} .

For the answer, a = 3 a=3 , b = 8 b=8 , c = 5 c=5 , d = 21 d=21 , thus a + b + c + d = 37 a+b+c+d=\boxed{37} .

K T
Dec 13, 2020

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...