(1): If A B and A ′ B ′ are tangent to the curves y = ∣ x ∣ 1 / 4 and y = − x 4 at points A , B , A ′ , B ′ find the area of trapezoid A B ′ B A ′ above.
(2): If C D and C ′ D ′ are tangent to the curves y = ∣ x ∣ and y = − x 2 at points C , D , C ′ , D ′ find the area of the trapezoid D C ′ C D ′ above.
Express the answer as the difference of the area of the trapezoids A A B ′ B A ′ − A D C ′ C D ′ to seven decimal places.
Extra: Find the perpendicular distance between the parallel lines above, say the perpendicular distance between A B and C D .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
For (1):
Using the symmetry about the y axis let f ( x ) = − x 4 and g ( x ) = x 1 / 4 ⟹
d x d ( f ( x ) ) ∣ x = a = − 4 a 3 and d x d ( g ( x ) ) ∣ x = b = 4 b 4 3 1 ⟹ − 4 a 3 = 4 b 4 3 1 ⟹ a = 1 6 3 1 b 4 1 − 1
Using A : ( a , − a 4 ) = ( 1 6 3 1 b 4 1 − 1 , 1 6 3 4 b − 1 ) and B : ( b , b 4 1 ) ⟹
The slope m = ( 1 6 b 4 3 ) ( 1 6 3 1 b 4 5 + 1 ) 1 6 3 4 b 4 5 + 1 = 4 b 4 3 1 ⟹ 4 3 8 b 4 5 + 1 = 4 3 5 b 4 5 + 4 ⟹ 4 3 5 b 4 5 = 1 ⟹ b = 4 3 4 1 ⟹ a = 4 3 1 − 1
⟹ A : ( 4 3 1 − 1 , 4 3 4 − 1 ) and B : ( 4 3 4 1 , 4 3 1 1 )
Using the symmetry about the y axis ⟹ A ′ : ( 4 3 1 1 , 4 3 4 − 1 ) and B ′ : ( 4 3 4 − 1 , 4 3 1 1 ) ⟹
B B ′ = 4 3 4 2 , A A ′ = 4 3 1 2 and using point P : ( 4 3 4 − 1 , 4 3 4 − 1 ) the height h of the given trapezoid is h = B ′ P = 4 3 4 5 ⟹ A A B ′ B A ′ = ( 4 3 4 5 ) 2
In addition:
Using points A and B ⟹ m A B = 1 ⟹ y = x + 4 3 4 3
Using points A ′ and B ′ ⟹ m A ′ B ′ = − 1 ⟹ y = − x + 4 3 4 3
For (2):
Again using the symmetry about the y axis let f ( x ) = − x 2 and g ( x ) = x ⟹
d x d ( f ( x ) ) ∣ x = a = − 2 a and d x d ( g ( x ) ) ∣ x = b = 2 b 1 ⟹
− 2 a = 2 b 1 ⟹ a = − 4 b 1
D : ( a , − a 2 ) = ( − 4 b 1 , − 1 6 b 1 ) and C : ( b , b ) ⟹
slope m = 2 b 1 = 4 b 1 ( 4 b 2 3 + 1 1 6 b 2 3 + 1 ) ⟹
1 6 b 2 3 + 1 = 8 b 2 3 + 2 ⟹ 8 b 2 3 = 1 ⟹ b = 4 1
⟹ slope m = 1 and a = − 2 1
Using D : ( − 2 1 , − 4 1 ) ⟹ y = x + 4 1
y = x + 4 1 is tangent to g ( x ) at C : ( 4 1 , 2 1 ) and f ( x ) at D : ( − 2 1 , − 4 1 )
Using the symmetry about the y axis D : ( 2 − 1 , 4 − 1 ) → D ′ : ( 2 1 , 4 − 1 ) and C : ( 4 1 , 2 1 ) → C ′ : ( 4 − 1 , 2 1 ) .
Using points D ′ : ( 2 1 , 4 − 1 ) and C ′ : ( 4 − 1 , 2 1 ) ⟹ y = 4 1 − x and D D ′ = 1 , C C ′ = 2 1 and the height of the trapezoid C ′ Q = 4 3 ⟹ the area of the trapezoid A D C ′ C D ′ = 2 1 ( 4 3 ) ( 2 3 ) = 1 6 9 = ( 4 3 ) 2
⟹ A A B ′ B A ′ − A D C ′ C D ′ = ( 4 3 4 5 ) 2 − ( 4 3 ) 2 ≈ 0 . 0 5 7 5 7 8 5
Extra:
To find the perpendicular distance between A B and A B .
For A B , y = x + 4 3 4 3
For C D , y = x + 4 1
Let D F be the line perpendicular to y = x + 4 1 and y = x + 4 3 4 3
D F pass thru the point ( 2 − 1 , 4 − 1 ) with slope m ⊥ = − 1 ⟹
y = − x − 4 3 represents line D F
Find the point of intersection for the lines:
y = x + 4 3 4 3
y = − x − 4 3
⟹ x = 8 − 3 ( 1 + 4 3 1 1 ) and y = 8 − 3 ( 1 − 4 3 1 1 )
⟹ the distance D F = 8 1 2 ∗ 4 3 1 4 3 4 + 9 ∗ 4 3 2 − 2 4 ≈ . 1 5 7 3 1 0 after simplifying.