It's all Volumes

Geometry Level 2

If the shaded region in rectangle A B C D ABCD above with diagonal A C AC and inscribed semicircle whose diameter is B C BC is revolved about the line A B AB , then the resulting volume V V can be represented as V = a a b ( a b b c a arcsin ( a a c ) ) π V = a^{a b}\left(\dfrac{a^{b} b}{c^{a}} - \arcsin\left(\dfrac{a^a}{c}\right)\right)\pi , where a a , b b and c c are coprime positive integers.

Find a + b + c a + b + c .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Nov 24, 2019

Using the diagram above the equation of line A C AC is y = 1 2 x y = \dfrac{1}{2}x or x = 2 y x = 2y and for the circle centered at (4,4) with have ( x 4 ) 2 + ( y 4 ) 2 = 16 (x - 4)^2 + (y - 4)^2 = 16

x = 2 y ( 2 y 4 ) 2 + ( y 4 ) 2 = 16 5 y 2 24 y + 16 = 0 x = 2y \implies (2y - 4)^2 + (y - 4)^2 = 16 \implies 5y^2 - 24y + 16 = 0 \implies

y = 4 5 , y = 4 y = \dfrac{4}{5}, y = 4 Since we already have ( 8 , 4 ) P ( 8 5 , 4 5 ) (8,4) \implies P(\dfrac{8}{5},\dfrac{4}{5})

So the volume of the pink region when revolved about the y y axis is the volume of the cone
V 1 = 1 3 ( 8 5 ) 2 ( 4 5 ) π = 256 375 π V_{1} = \dfrac{1}{3}(\dfrac{8}{5})^2(\dfrac{4}{5})\pi = \boxed{\dfrac{256}{375}\pi} .

( x 4 ) 2 + ( y 4 ) 2 = 16 x = 4 16 ( y 4 ) 2 (x - 4)^2 + (y - 4)^2 = 16 \implies x = 4 - \sqrt{16 - (y - 4)^2} which is the portion of the circle needed.

V 2 = π 4 5 4 ( 4 16 ( y 4 ) 2 ) 2 d y = V_{2} = \pi\displaystyle\int_{\dfrac{4}{5}}^{4} (4 - \sqrt{16 - (y - 4)^2})^2 dy =

π 4 5 4 ( 32 ( y 4 ) 2 8 16 ( y 4 ) 2 ) d y \pi\displaystyle\int_{\dfrac{4}{5}}^{4} (32 - (y - 4)^2 - 8\sqrt{16 - (y - 4)^2}) dy

4 5 4 ( 32 ( y 4 ) 2 ) d y = 32 y ( y 4 ) 3 3 4 5 4 \displaystyle\int_{\dfrac{4}{5}}^{4} (32 - (y - 4)^2) dy = 32y - \dfrac{(y - 4)^3}{3}|_{\dfrac{4}{5}}^{4} = 34304 375 = \dfrac{34304}{375}

For I = 16 ( y 4 ) 2 d y I = \displaystyle\int \sqrt{16 - (y - 4)^2} dy

Let y 4 = 4 sin ( θ ) d y = 4 cos ( θ ) I = 8 ( 1 + cos ( 2 θ ) ) d θ y - 4 = 4\sin(\theta) \implies dy = 4\cos(\theta) \implies I = 8\displaystyle\int (1 + \cos(2\theta)) d\theta

= 8 ( θ + sin ( θ ) cos ( θ ) ) = 8 ( arcsin ( y 4 4 ) + ( y 4 ) 16 ( y 4 ) 2 16 ) = 8(\theta + \sin(\theta)\cos(\theta)) = 8(\arcsin(\dfrac{y - 4}{4}) + \dfrac{(y - 4)\sqrt{16 - (y - 4)^2}}{16})

4 5 4 ( 16 ( y 4 ) 2 ) d y = \implies \displaystyle\int_{\dfrac{4}{5}}^{4} (\sqrt{16 - (y - 4)^2}) dy = 8 arcsin ( 4 5 ) + 96 25 8\arcsin(\dfrac{4}{5}) + \dfrac{96}{25}

V 2 = π ( 34304 375 64 arcsin ( 4 5 ) 768 25 ) = \implies V_{2} = \pi(\dfrac{34304}{375} - 64\arcsin(\dfrac{4}{5}) - \dfrac{768}{25}) = π ( 22784 375 64 arcsin ( 4 5 ) ) \boxed{\pi(\dfrac{22784}{375} - 64\arcsin(\dfrac{4}{5}))}

V = V 1 + V 2 = π ( 256 375 + 22784 375 64 arcsin ( 4 5 ) ) = \implies V = V_{1} + V_{2} = \pi(\dfrac{256}{375} + \dfrac{22784}{375} - 64\arcsin(\dfrac{4}{5})) = 64 π ( 24 25 arcsin ( 4 5 ) ) = 64\pi(\dfrac{24}{25} - \arcsin(\dfrac{4}{5})) =

2 2 3 ( 2 3 3 5 2 arcsin ( 2 2 5 ) ) π = a a b ( a b b c a arcsin ( a a c ) ) π a + b + c = 10 2^{2 * 3}(\dfrac{2^3 * 3}{5^2} - \arcsin(\dfrac{2^2}{5}))\pi = a^{a * b}(\dfrac{a^{b} * b}{c^{a}} - \arcsin(\dfrac{a^a}{c}))\pi \implies a + b + c = \boxed{10} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...