It's Always e!

Calculus Level 4

lim n n n 2 ( ( n + 1 ) ( n + 1 2 ) ( n + 1 2 2 ) ( n + 1 2 n 1 ) ) n = e k \lim_{n\to\infty} n^{-n^{2}} \left((n+1)\left(n+\frac{1}{2}\right)\left(n+\frac{1}{2^{2}}\right)\cdots\left(n+\frac{1}{2^{n-1}}\right)\right)^{n} = e^{k}

Find the value of k k .


Notation: e 2.71828 e \approx 2.71828 denotes the Euler's number .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 25, 2017

L = lim n n n 2 ( ( n + 1 ) ( n + 1 2 ) ( n + 1 2 2 ) ( n + 1 2 n 1 ) ) n = lim n ( i = 0 n 1 ( n + 1 2 i ) n n ) n = lim n i = 0 n 1 ( 1 + 1 2 i n ) n = lim n i = 0 n 1 ( 1 + 1 2 i n ) 2 i n 2 i = lim n i = 0 n 1 exp ( 1 2 i ) where exp ( x ) = e x = lim n exp i = 0 n 1 1 2 i = e 2 \begin{aligned} L & = \lim_{n \to \infty} n^{-n^2} \left(\left(n+1\right)\left(n+\frac 12\right)\left(n+\frac 1{2^2}\right)\left(n+\frac 1{2^{n-1}}\right)\right)^n \\ & = \lim_{n \to \infty} \left(\frac {\prod_{i=0}^{n-1}\left(n+\frac 1{2^i}\right)}{n^n} \right)^n \\ & = \lim_{n \to \infty} \prod_{i=0}^{n-1}\left(1+\frac 1{2^in}\right)^n \\ & = \lim_{n \to \infty} \prod_{i=0}^{n-1}\left(1+\frac 1{2^in}\right)^{2^in\cdot 2^{-i}} \\ & = \lim_{n \to \infty} \prod_{i=0}^{n-1} \exp \left(\frac 1{2^i}\right) & \small \color{#3D99F6} \text{where }\exp(x) = e^x \\ & = \lim_{n \to \infty} \exp \sum_{i=0}^{n-1} \frac 1{2^i} \\ & = e^2 \end{aligned}

k = 2 \implies k = \boxed{2}

Nice problem and solution.

Aman Joshi - 3 years, 7 months ago

There is typo in second step 2 k 2^k where i = 0 i=0

Naren Bhandari - 3 years, 7 months ago

Log in to reply

Thanks. I have changed it. After keying the solution with k k all over the place. Then I realised the answer requested for is k k , so I replace the k k with i i and missed one.

Chew-Seong Cheong - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...