It's an Area Feast.

Level 2

If f ( x ) = n = 1 ( ( 2 n + 1 2 ) ! ( 2 n 3 2 ) ! n x n ) f(x) = \displaystyle\sum_{n = 1}^{\infty} \left(\left(\frac{2n + 1}{2}\right)! \left(\frac{-2n - 3}{2}\right)! * n x^n\right) on ( 0 x < 1 ) (0 \leq x < 1) and g ( x ) = π n = 1 x n n g(x) = \pi\displaystyle\sum_{n = 1}^{\infty} \dfrac{x^n}{n} on ( 0 x < 1 ) (0 \leq x < 1) and the area A A bounded by f f and g g on [ 0 , 1 2 ] [0,\dfrac{1}{2}] can be expressed as A = π ( α λ β ln ( β λ ) ) A = \pi(\dfrac{\alpha}{\lambda * \beta} - \ln(\dfrac{\beta}{\sqrt{\lambda}})) , where gcf ( α , β , λ ) = 1 \text{gcf}(\alpha,\beta,\lambda) = 1 , find α + β + λ \alpha + \beta + \lambda .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Aug 31, 2018

Using the gamma function Γ ( p ) = 0 t p 1 e t d t \Gamma(p) = \int_{0}^{\infty} t^{p - 1} e^{-t} dt we obtain:

Γ ( 1 2 ) = 0 t 1 2 e t d t \Gamma(\dfrac{1}{2}) = \displaystyle\int_{0}^{\infty} t^{-\frac{1}{2}} e^{-t} dt

Let s 2 = t 2 s d s = d t s^2 = t \implies 2s ds = dt \implies

Γ ( 1 2 ) = 2 0 e s 2 d s \Gamma(\dfrac{1}{2}) = 2\displaystyle\int_{0}^{\infty} e^{-s^2} ds

Since s is a dummy variable we can write:

( Γ ( 1 2 ) ) 2 = (\Gamma(\dfrac{1}{2}))^2 = 4 0 e x 2 d x 0 e y 2 d y = 4\displaystyle\int_{0}^{\infty} e^{-x^2} dx \int_{0}^{\infty} e^{-y^2} dy = 4 0 0 e ( x 2 + y 2 ) d x d y 4\displaystyle\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2 + y^2)} dx dy

Let x = r cos θ , y = r sin θ x = r\cos\theta, y = r\sin\theta

Using the Jacobian ( Γ ( 1 2 ) ) 2 = 4 0 π 2 0 e r 2 r d r d θ = \implies (\Gamma(\dfrac{1}{2}))^2 = 4\displaystyle\int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} e^{-r^2} r dr d\theta = 2 0 π 2 e r 2 0 d θ = 2 0 π 2 d θ = π Γ ( 1 2 ) = π -2\displaystyle\int_{0}^{\frac{\pi}{2}} e^{-r^2}|_{0}^{\infty} d\theta = 2\displaystyle\int_{0}^{\frac{\pi}{2}} d\theta = \pi \implies \Gamma(\dfrac{1}{2}) = \sqrt{\pi}

Now, using integration by parts you can show that Γ ( p + 1 ) = p Γ ( p ) \Gamma(p + 1) = p \Gamma(p)

Show Γ ( 1 ) = 1 \Gamma(1) = 1 and recursively using Γ ( p + 1 ) = p Γ ( p ) Γ ( p + 1 ) = p ! \Gamma(p + 1) = p \Gamma(p) \implies \Gamma(p + 1) = p! for any integer p 0 p \geq 0 and p can be extended to reals so that Γ ( 1 2 ) = Γ ( 1 2 + 1 ) = π = ( 1 2 ) ! \Gamma(\dfrac{1}{2}) = \Gamma(\dfrac{-1}{2} + 1) = \sqrt{\pi} = (\dfrac{-1}{2})!

Using Γ ( p + 1 ) = p Γ ( p ) \Gamma(p + 1) = p \Gamma(p) and Γ ( 1 2 ) = π = ( 1 2 ) ! \Gamma(\dfrac{1}{2}) = \sqrt{\pi} = (\dfrac{-1}{2})!

\implies

S 0 = Γ ( 3 2 ) = 1 2 Γ ( 1 2 ) = π 2 = ( 1 2 ) ! S_{0} = \Gamma(\dfrac{3}{2}) = \dfrac{1}{2} * \Gamma(\dfrac{1}{2}) = \dfrac{\sqrt{\pi}}{2} = (\dfrac{1}{2})!

S 1 = Γ ( 5 2 ) = 3 2 Γ ( 3 2 ) = 1 3 π 2 2 = ( 3 2 ) ! S_{1} = \Gamma(\dfrac{5}{2}) = \dfrac{3}{2} * \Gamma(\dfrac{3}{2}) = \dfrac{1 * 3 * \sqrt{\pi}}{2^2} = (\dfrac{3}{2})!

S 2 = Γ ( 7 2 ) = 5 2 Γ ( 5 2 ) = 1 3 5 π 2 3 = ( 5 2 ) ! S_{2} = \Gamma(\dfrac{7}{2}) = \dfrac{5}{2} * \Gamma(\dfrac{5}{2}) = \dfrac{1 * 3 * 5 * \sqrt{\pi}}{2^3} = (\dfrac{5}{2})!

In General:

S n = Γ ( 2 n + 3 2 ) = 1 3 5 ( 2 n + 1 ) π 2 n + 1 = ( n + 1 2 ) ! S_{n} = \Gamma(\dfrac{2n + 3}{2}) = \dfrac{1 * 3 * 5 * * * (2n + 1) * \sqrt{\pi}}{2^{n + 1}} = (n + \frac{1}{2})!

( n + 1 2 ) ! = ( 2 n + 1 ) ! π 2 2 n + 1 n ! \implies (n + \dfrac{1}{2})! = \dfrac{(2n + 1)! * \sqrt{\pi}}{2^{2n + 1} * n!} , where n n is a non-negative integer.

Note: ( 2 n + 1 ) ! = 1 2 3 ( 2 n ) ( 2 n + 1 ) = 2 n n ! ( 1 3 5 ( 2 n + 1 ) ) (2n + 1)! = 1 * 2 * 3 * * * (2n) * (2n + 1) = 2^n * n! * (1 * 3 * 5 * * * (2n + 1)) \implies 1 3 5 ( 2 n + 1 ) = ( 2 n + 1 ) ! 2 n n ! 1 * 3 * 5 * * * (2n + 1) = \dfrac{(2n + 1)!}{2^n * n!}

and,

Using Γ ( p ) = Γ ( p + 1 ) p \Gamma(p) = \dfrac{\Gamma(p + 1)}{p} and Γ ( 1 2 ) = π = ( 1 2 ) ! \Gamma(\dfrac{1}{2}) = \sqrt{\pi} = (\dfrac{-1}{2})!

\implies

T 0 = Γ ( 1 2 ) = 2 Γ ( 1 2 ) = 2 π = ( 3 2 ) ! T_{0} = \Gamma(-\dfrac{1}{2}) = -2\Gamma(\dfrac{1}{2}) = -2\sqrt{\pi} = (-\dfrac{3}{2})!

T 1 = Γ ( 3 2 ) = 2 3 Γ ( 1 2 ) = 2 2 1 3 π = ( 5 2 ) ! T_{1} = \Gamma(-\dfrac{3}{2}) = -\dfrac{2}{3}\Gamma(-\dfrac{1}{2}) = \dfrac{2^2}{1 * 3}\sqrt{\pi} = (-\dfrac{5}{2})!

T 2 = Γ ( 5 2 ) = 2 5 Γ ( 3 2 ) = 2 3 1 3 5 π = ( 7 2 ) ! T_{2} = \Gamma(-\dfrac{5}{2}) = -\dfrac{2}{5}\Gamma(-\dfrac{3}{2}) = -\dfrac{2^3}{1 * 3 * 5}\sqrt{\pi} = (-\dfrac{7}{2})!

In General:

T n = Γ ( n 1 2 ) = ± 2 n + 1 π 1 3 5 ( 2 n + 1 ) = ( n 3 2 ) ! T_{n} = \Gamma(-n -\dfrac{1}{2}) = \pm\dfrac{2^{n + 1}\sqrt{\pi}}{1 * 3 * 5 * * * (2n + 1)} = (-n -\dfrac{3}{2})!

( n 3 2 ) ! = ± 2 2 n + 1 n ! π ( 2 n + 1 ) ! \implies (-n - \dfrac{3}{2})! = \pm\dfrac{2^{2n + 1} * n!\sqrt{\pi}}{(2n + 1)!} , where n n is a non-negative integer

\implies

S n T n = S_{n} * T_{n} = { π for n odd π for n even \begin{cases} \pi & \text{for} \:\ n \:\ \text{odd}\\ -\pi & \text{for} \:\ n \:\ \text{even}\\ \end{cases} .

Let ( 0 x < 1 ) (0 \leq x < 1)

n = 1 n x n = j = 1 n = j x n = 1 1 x j = 1 x j = 1 1 x ( x ) 1 1 x = x ( 1 x ) 2 \displaystyle\sum_{n = 1}^{\infty} n x^n = \displaystyle\sum_{j = 1}^{\infty} \displaystyle\sum_{n = j}^{\infty} x^n = \dfrac{1}{1 - x}\displaystyle\sum_{j = 1}^{\infty} x^{j} = \dfrac{1}{1 - x}(x)\dfrac{1}{1 - x} = \dfrac{x}{(1 - x)^2}

\implies

f ( x ) = n = 1 ( ( 2 n + 1 2 ) ! ( 2 n 3 2 ) ! n x n ) = π n = 1 ( 1 ) n n x n = π x ( 1 + x ) 2 f(x) = \displaystyle\sum_{n = 1}^{\infty} \left(\left(\frac{2n + 1}{2}\right)! \left(\frac{-2n - 3}{2}\right)! * n x^n\right) = -\pi\displaystyle\sum_{n = 1}^{\infty} (-1)^n n x^n = \dfrac{\pi x}{(1 + x)^2}

Let u = 1 + x d x = d u 0 1 2 f ( x ) d x = π 1 3 2 1 u 1 u 2 d u = π ( ln ( u ) + 1 u ) 1 3 2 = π ( ln ( 3 2 ) 1 3 ) u = 1 + x \implies dx = du \implies \displaystyle\int_{0}^{\frac{1}{2}} f(x) dx = \pi\displaystyle\int_{1}^{\frac{3}{2}} \dfrac{1}{u} - \dfrac{1}{u^2} du = \pi(\ln(u) + \dfrac{1}{u})|_{1}^{\frac{3}{2}} = \boxed{\pi(\ln(\dfrac{3}{2}) - \dfrac{1}{3})}

Let g ( x ) = π n = 1 x n n g(x) = \pi\displaystyle\sum_{n = 1}^{\infty} \dfrac{x^n}{n} on ( 0 x < 1 ) (0 \leq x < 1)

d d x ( g ( x ) ) = π n = 1 x n 1 = π 1 x g ( x ) = π 0 x 1 1 x d x = π ln ( 1 1 x ) \implies \dfrac{d}{dx}(g(x)) = \pi\displaystyle\sum_{n = 1}^{\infty} x^{n - 1} = \dfrac{\pi}{1 - x} \implies g(x) = \pi\displaystyle\int_{0}^{x} \dfrac{1}{1 - x} dx = \pi\ln(\dfrac{1}{1 - x}) .

For π 0 1 2 ln ( 1 1 x ) d x \pi\displaystyle\int_{0}^{\frac{1}{2}} \ln(\dfrac{1}{1 - x}) dx

Let u = ln ( 1 1 x ) d u = d x 1 x u = \ln(\dfrac{1}{1 - x}) \implies du = \dfrac{dx}{1 - x} and d v = d x v = x dv = dx \implies v = x \implies

π 0 1 2 ln ( 1 1 x ) d x = π ( x ln ( 1 1 x ) + ln ( 1 x ) + x ) 0 1 2 = π 2 ( 1 ln ( 2 ) ) \pi\displaystyle\int_{0}^{\frac{1}{2}} \ln(\dfrac{1}{1 - x}) dx = \pi(x\ln(\dfrac{1}{1 - x}) + \ln(1 - x) + x)|_{0}^{\frac{1}{2}} = \boxed{\dfrac{\pi}{2}(1 - \ln(2))}

0 1 2 g ( x ) f ( x ) = π ( 5 6 ln ( 3 2 ) ) = \implies \displaystyle\int_{0}^{\frac{1}{2}} g(x) - f(x) = \pi(\dfrac{5}{6} - \ln(\dfrac{3}{\sqrt{2}})) = π ( 5 2 3 ln ( 3 2 ) ) = π ( α λ β ln ( β λ ) ) α + β + λ = 10 \pi(\dfrac{5}{2 * 3} - \ln(\dfrac{3}{\sqrt{2}})) = \pi(\dfrac{\alpha}{\lambda * \beta} - \ln(\dfrac{\beta}{\sqrt{\lambda}})) \implies \alpha + \beta + \lambda = \boxed{10} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...