It's as hard as 1-2-3

Geometry Level 5

A circle with center O O has two points A , B A,B on its circumference and one point P P inside the circle such that A P = 1 AP=1 , B P = 2 BP=2 , O P = 3 OP=3 , and A P B = 9 0 \angle APB=90^{\circ} . If the area of the circle can be expressed as ( a + b c d ) π \left(\dfrac{a+b\sqrt{c}}{d}\right)\pi for positive integers a , b , c , d a,b,c,d such that c c is square-free and a , b a,b are coprime with d d , then find the value of a + b + c + d a+b+c+d .


The answer is 83.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

17 solutions

Daniel Liu
Apr 3, 2014

Let A O = O B = r AO=OB=r . Also, let A P O = α \angle APO=\alpha .

By Law of Cosines on A P O \triangle APO , we have r 2 = 1 2 + 3 2 2 1 3 cos α r^2=1^2+3^2-2\cdot1\cdot3\cdot \cos\alpha

Now note that B P O = 270 α \angle BPO=270-\alpha

By Law of Cosines on B P O \triangle BPO , we have r 2 = 2 2 + 3 2 2 2 3 cos ( 270 α ) r^2=2^2+3^2-2\cdot2\cdot3\cdot\cos(270-\alpha) .

Observe that cos ( 270 α ) = sin α \cos(270-\alpha)=-\sin\alpha (draw it on the unit circle if you are not convinced).

Therefore, r 2 = 2 2 + 3 2 + 2 2 3 sin ( α ) r^2=2^2+3^2+2\cdot2\cdot3\cdot\sin(\alpha)

Simplify, and we have a system of equations: { r 2 = 10 6 cos α r 2 = 13 + 12 sin α \left\{\begin{array}{l}r^2=10-6\cos\alpha \\ r^2=13+12\sin\alpha\end{array}\right.

Setting the two equations equal: 10 6 cos α = 13 + 12 sin α 10-6\cos\alpha=13+12\sin\alpha

We want to work with either only cos α \cos\alpha or only sin α \sin\alpha , which makes us think of sin 2 α + cos 2 α = 1 \sin^2\alpha+\cos^2\alpha=1 . Thus, we aim to square both sides of the equation.

Isolating the sin α \sin\alpha : 12 sin α = 3 6 cos α 12\sin\alpha=-3-6\cos\alpha

Dividing by 3 3 and squaring: 16 sin 2 α = 1 + 4 cos α + 4 cos 2 α 16\sin^2\alpha=1+4\cos\alpha+4\cos^2\alpha

Using sin 2 α = 1 cos 2 α \sin^2\alpha=1-\cos^2\alpha : 16 16 cos 2 α = 1 + 4 cos α + 4 cos 2 α 16-16\cos^2\alpha=1+4\cos\alpha+4\cos^2\alpha

Rearranging: 20 cos 2 α + 4 cos α 15 = 0 20\cos^2\alpha+4\cos\alpha-15=0

Aha, a quadratic! Let's let cos α = x \cos\alpha=x for now. 20 x 2 + 4 x 15 = 0 20x^2+4x-15=0

Solving using the quadratic equation, we get that x = 1 ± 2 19 10 x=\dfrac{-1\pm 2\sqrt{19}}{10}

But which one is the correct value of x x ? We know that there can only be a unique α \alpha , but there are two possible values of x x .

Let's observe that type of angle α \alpha is. α \alpha seems to be an obtuse angle. Therefore, cos α < 0 \cos\alpha < 0 , and the value we want is x = 1 2 19 10 x=\dfrac{-1- 2\sqrt{19}}{10} .

So now we know that cos α = 1 2 19 10 \cos\alpha=\dfrac{-1- 2\sqrt{19}}{10} . Looking back at what we want to find, we see that we want to find π r 2 \pi r^2 . We already have an equation for r 2 r^2 though: r 2 = 10 6 cos α r^2=10-6\cos\alpha

Plugging in cos α = 1 2 19 10 \cos\alpha=\dfrac{-1- 2\sqrt{19}}{10} gives r 2 = 10 6 ( 1 2 19 10 ) = 53 + 6 19 5 r^2=10-6\left(\dfrac{-1- 2\sqrt{19}}{10}\right)=\dfrac{53+6\sqrt{19}}{5} .

Thus, the area of the circle is ( 53 + 6 19 5 ) π \left(\dfrac{53+6\sqrt{19}}{5}\right)\pi . Clearly, a = 53 a=53 b = 6 b=6 c = 19 c=19 d = 5 d=5

Therefore, our answer is finally 53 + 6 + 19 + 5 = 83 53+6+19+5=\boxed{83} and we are finally done! \Box


Problem maker's note: This particular problem took me roughly 1.5 hours , the longest I have ever taken, from idea to finished product, so if you like it, please show your support!

Well, since no one else wants to prove that α \alpha is obtuse, then I will. Suppose, to the contrary that α \alpha is acute. For brevity, let β = O P B \beta = \angle OPB . Then we have two cases:

Case 1: α \alpha is acute, β \beta is obtuse

Acute Case Acute Case

Since O P A \angle OPA is acute, then applying the Cosine Law on O P A \triangle OPA gives us O A = O P 2 + P A 2 2 ( O P ) ( P A ) c o s ( α ) OA = \sqrt{OP^2 + PA^2 - 2(OP)(PA)cos(\alpha)} , and therefore O A < 1 2 + 3 2 = 10 OA < \sqrt{1^2 + 3^2} = \sqrt{10} .

However, we also have that β \beta is obtuse. Therefore, applying the Cosine Law on O P B \triangle OPB gives us O B > 2 2 + 3 2 = 13 OB > \sqrt{2^2 + 3^2} = \sqrt{13} . This is a contradiction since now we have 10 > O A = O B > 13 \sqrt{10} > OA = OB > \sqrt{13} .

Case 2: α \alpha is acute, β \beta is acute

Case 2 Case 2

Since O A > 3 > 1 OA > 3 > 1 , then α \alpha must be the greatest angle in O P A \triangle OPA . Therefore α > 6 0 \alpha > 60^{\circ} . However, by similar logic we also get β > 6 0 \beta > 60^{\circ} . But this is a contradiction since in this case, α + β 9 0 \alpha + \beta - 90^{\circ} .

Either way, we see that α \alpha cannot be acute. Therefore α \alpha is obtuse. QED

Ariel Gershon - 6 years, 8 months ago

https://brilliant.org/discussions/thread/can-you-help/?ref_id=498718

.

.

it is solved by default LOL

math man - 6 years, 6 months ago

thanks for solving

Zameer Sheikh - 7 years, 2 months ago

Nice! This is great! :D

Finn Hulse - 7 years, 2 months ago

But u made it

Rohit Singh - 7 years, 1 month ago

Log in to reply

I made the question. However, I did not have a solution in mind, so I had to solve the question I proposed just like all of you. Along with the solution writing, double and triple checking work, and making the problem itself from the cauldron of mathematical ideas in the universe, it took a long time.

Anyways, that 1.5 hour record was easily beat by Directrix will Drive you Delirious

Daniel Liu - 7 years, 1 month ago

brilliant! Please make more! Job well done!

Christian Baldo - 7 years, 1 month ago

Is "alpha seems to be an obtuse angle" really a justification? "It seems to be" doesn't prove that "it is". Our intuition could be wrong. Even the absolutely obvious statements were proved in the Euclid's book "Elements". So you should come up with the proof of the fact to make this a perfectly valid solution.

mathh mathh - 7 years, 1 month ago

In all seriousness though, could you tell me a proof of the alpha angle being obtuse? Thanks.

mathh mathh - 7 years, 1 month ago

Seriously, it took me aboit 15 minutes.

mietantei conan - 7 years ago

I did almost same .just instead of eliminating r ,u can eliminate alpha.anyways gd sum.

Rushikesh Joshi - 6 years, 1 month ago

i solved it exactly the same lengthy way! :P but i liked the problem~! :)

Pradeep Ch - 7 years, 2 months ago

You should check out my solution and see what I did. ( Just copied your statement, if you remember. LOL \textit{Just copied your statement, if you remember. LOL} )

Nishant Sharma - 6 years, 10 months ago
Xuming Liang
Apr 3, 2014

Let M M be the midpoint of the A B AB , whose length is 1 2 + 2 2 = 5 \sqrt {1^2+2^2}=\sqrt {5} . Since O A = O B OA=OB , therefore O M A B OM\perp AB . Let N N denote the intersection of A P , O M AP,OM .

Since N A M B A P \triangle NAM\sim \triangle BAP , by their corresponding side ratio equality we have A M A B = A N A P 5 2 5 = 1 A N = 5 2 AM*AB=AN*AP\Rightarrow \frac {\sqrt {5}}{2}\sqrt {5}=1*AN=\frac {5}{2} P N = 5 2 1 = 3 2 \Rightarrow PN=\frac {5}{2}-1=\frac {3}{2} .

At this point, one may be motivated to use the laws of cosine on O P N \triangle OPN since c o s O N P = c o s A N M = c o s A B P = 2 5 cos\angle ONP=-cos\angle ANM=-cos\angle ABP=-\frac {2}{\sqrt {5}} , that is what I decided to do to find the length of O N ON , which is denoted by x x :

O P 2 = 9 = P N 2 + x 2 2 x P N c o s O N P = 9 4 + x 2 + 6 5 x OP^2=9=PN^2+x^2-2xPNcos\angle ONP=\frac {9}{4}+x^2+\frac {6}{\sqrt {5}}x

Solving this quadratic gives x = 3 19 6 2 5 x=\frac {3\sqrt {19}-6}{2\sqrt {5}} (of course..after omitting the negative).

By the similarity again we have N M = A M 2 = 5 NM=AM*2=\sqrt {5} , hence O M = O N + N M = 3 19 + 4 2 5 OM=ON+NM=\frac {3\sqrt {19}+4}{2\sqrt {5}} and now we can use the Pythagorean theorem to find the radius squared, which is 53 + 6 19 5 \frac {53+6\sqrt {19}}{5} . Since the area of a circle is pi*radius squared, this is the expression we need, thus our answer is 53 + 6 + 19 + 5 = 83 53+6+19+5=\boxed {83}

Clever solution! Much shorter than my page-long solution. Kudos for the ingenuity.

Daniel Liu - 7 years, 2 months ago

Log in to reply

Thanks..a shorter solution doesn't really mean anything..although mine has less trig but I think yours is a more natural approach. Well that's why I enjoy doing geometry problems(especially proofs) because you just have so much freedom with the diagram and you can construct whatever you want(useful things of course..).

Btw your problems have been great and fun, keep them coming!

Xuming Liang - 7 years, 2 months ago

Much shorter solution. BTW, why is that triangle NAM is similar to triangle BAP?

Unstable Chickoy - 7 years, 1 month ago

Log in to reply

both triangles share P A B \angle PAB and A M N = A P B = 90 \angle AMN=\angle APB=90

Xuming Liang - 7 years, 1 month ago

Log in to reply

I got it. Thank you

Unstable Chickoy - 7 years, 1 month ago
Nishant Sharma
Jul 7, 2014

Well I found a solution using Pythagoras' Theorem. Here it goes

Construction Construction

Now we use Pythagoras' Theorem on the three right-triangles,

r 2 = y 2 + ( x + 2 ) 2 ( i ) r^2=y^2+\left(x+2\right)^2\;---(i)

r 2 = x 2 + ( y + 1 ) 2 ( i i ) r^2=x^2+\left(y+1\right)^2\;---(ii)

x 2 + y 2 = 3 2 ( i i i ) x^2+y^2=3^2\;\;\;---(iii)

From ( i ) (i) and ( i i ) (ii) we get 3 + 4 x = 2 y y = 3 2 + 2 x ( i v ) 3+4x=2y\rightarrow\,y=\frac{3}{2}+2x\;---(iv)

Using this in ( i i i ) (iii) we get a quadratic in x x which is 20 x 2 + 24 x 27 = 0 20x^2+24x-27=0 . Taking the positive root(since x > 0 x>0 ) we have x = 6 + 3 19 10 x=\displaystyle\frac{-6+3\sqrt{19}}{10} .

Also using ( i i i ) (iii) in any of ( i ) (i) or ( i i ) (ii) we get r 2 = 13 + 4 x ( v ) r^2=13+4x--(v)

So area of circle = π r 2 = ( 13 + 4 x ) π = ( 53 + 6 19 5 ) π =\pi\,r^2=\left(13+4x\right)\pi=\left(\displaystyle\frac{53+6\sqrt{19}}{5}\right)\pi .

So a + b + c + d = 53 + 6 + 19 + 5 = 83 a+b+c+d=53+6+19+5=\boxed{83} .

Congratulations. Nice out of the box solution . Just to point out. Himanshu Arora's solution is the same in p r i n c i p l e . \color{#D61F06}{principle.}

Niranjan Khanderia - 6 years, 4 months ago
Abhimanyu Singh
Apr 4, 2014

Lets make the solution very simple but not tricky ....

For a triangle ABC you know the cosine rule-

c o s ( A ) = A B 2 + A C 2 B C 2 2. A B . A C cos(A) =\frac{{AB}^{2} + {AC}^{2} - {BC}^{2}}{ 2.AB.AC}

Now we will apply the cosine rule in triangle POA and in triangle POB , for angel P in both the triangles. Also note that OA and OB is radius of circle, say OA = OB = r

Applying cosine rule we have-

c o s ( O P A ) = 10 r 2 6 O P A = cos 1 10 r 2 6 cos(\angle OPA) = \frac{10 - {r}^{2}}{6} \Rightarrow \angle OPA = \cos^{-1}{\frac{10 - {r}^{2}}{6}}

c o s ( O P B ) = 13 r 2 12 O P B = cos 1 13 r 2 12 cos(\angle OPB) = \frac{13 - {r}^{2}}{12} \Rightarrow \angle OPB = \cos^{-1}{\frac{13 - {r}^{2}}{12}}

And clearly O P A \angle OPA + O P B \angle OPB = 3 π 2 \frac{3\pi}{2}

If you remember cos 1 x + cos 1 y = cos 1 ( x y ( 1 x 2 ) ( 1 y 2 ) \cos ^{ -1 }{ x } + \cos ^{ -1 }{ y } = \cos ^{ -1 }{ (xy - \sqrt { (1 - { x }^{ 2 })(1 - {y}^{2})}}

Now, if cos 1 x + cos 1 y = 3 π 2 \cos ^{ -1 }{ x } + \cos ^{ -1 }{ y } = \frac{3\pi}{2} \Rightarrow x y ( 1 x 2 ) ( 1 y 2 ) xy - \sqrt { (1 - { x }^{ 2 })(1 - {y}^{2})} = 0 \Rightarrow x 2 + y 2 = 1 { x }^{ 2 } + { y }^{ 2 } = 1

Here x = O P A \angle OPA and y = O P B \angle OPB , So-

( 10 r 2 6 ) 2 + ( 13 r 2 12 ) 2 = 1 { \left( \frac { 10 - { r }^{ 2 } }{ 6 } \right) }^{ 2 } + { \left( \frac { 13 - { r }^{ 2 } }{ 12 } \right) }^{ 2 } = 1
\Rightarrow 5 ( r 4 ) 106 ( r 2 ) + 425 = 0 5({ r }^{ 4 })-106({ r }^{ 2 })+425=0

Using Sridharacharya Formula ,

r 2 = 106 ± 2736 10 r 2 = 106 ± 12 19 10 r 2 = 53 ± 6 19 5 { r }^{ 2 }=\frac { 106\pm \sqrt { 2736 } }{ 10 } \Rightarrow { r }^{ 2 }=\frac { 106\pm 12\sqrt { 19 } }{ 10 } \Rightarrow { r }^{ 2 }=\frac { 53\pm 6\sqrt { 19 } }{ 5 }

Now its simple to compare and get that a = 53, b = 6, c = 19, d = 5 [Ignore negative sign, as demand of question]
\Rightarrow a + b + c + d = 83 a + b + c + d = 83

Himanshu Arora
May 30, 2014

Assume that the given figure is true. Draw lines parallel to PA and PB through O. Mark distance of P from these lines, x x and h h . Make three equations, h 2 + x 2 = 9 h^{2} + x^{2} = 9 ; ( h + 1 ) 2 + x 2 = r 2 (h+1)^{2}+ x^{2}=r^{2} ; h 2 + ( x + 2 ) 2 = r 2 h^{2}+ (x+2)^{2}=r^{2} . Solve to get the value of r 2 r^{2} as 6 19 + 53 5 \frac { 6\sqrt { 19 } +53 }{ 5 } . And hence get 83 \boxed{83} , answer

incredible

chaiyawat suppasilp - 7 years ago

A solution using the power of a point theorem (just Euclidean Geometry, no coordinate geometry, no trigonometry).

Let O M P A OM \bot PA , O N P B ON \bot PB , P M = x PM = x , P N = y PN = y .

M M is the midpoint of A A AA' , hence M A = x + 1 MA' = x + 1 .

Similarly, N N is the midpoint of B B BB' , hence N B = y + 2 NB' = y + 2 .

By power of a point theorem: P A P A = P B P B 1 ( 2 x + 1 ) = 2 ( 2 y + 2 ) x = 2 y + 3 2 ( 1 ) PA \cdot PA' = PB \cdot PB' \Rightarrow 1 \cdot \left( {2x + 1} \right) = 2 \cdot \left( {2y + 2} \right) \Rightarrow x = 2y + \frac{3}{2} \ \ \ \ \ (1)

By Pythagorean theorem on O N P \vartriangle ONP : O N 2 + N P 2 = O P 2 x 2 + y 2 = 9 ( 2 ) O{N^2} + N{P^2} = O{P^2} \Rightarrow {x^2} + {y^2} = 9 \ \ \ \ \ (2) .

Combining (1) and (2) we get the quadratic equation 5 y 2 + 6 y 27 4 = 0 5{y^2} + 6y - \frac{{27}}{4} = 0 , which gives the positive solution y = 6 + 3 19 10 y = \frac{{ - 6 + 3\sqrt {19} }}{{10}} .

Now, the power of point P P is given by the formula h = O P 2 R 2 h = O{P^2} - {R^2} , (where R R is the radius of the circle) and is opposite to the product P B P B PB \cdot PB' , hence,

O P 2 R 2 = P B P B R 2 = 9 + 2 ( 2 y + 2 ) R 2 = 4 y + 13 = 4 6 + 3 19 10 + 13 = 53 + 6 19 5 \begin{gathered} O{P^2} - {R^2} = - PB \cdot PB' \Rightarrow {R^2} = 9 + 2 \cdot \left( {2y + 2} \right) \\ \Rightarrow {R^2} = 4y + 13 = 4 \cdot \frac{{ - 6 + 3\sqrt {19} }}{{10}} + 13 = \frac{{53 + 6\sqrt {19} }}{5} \\ \end{gathered}

Thus, the area of the circle is A = R 2 π = 53 + 6 19 5 π A = {R^2} \cdot \pi = \frac{{53 + 6\sqrt {19} }}{5} \cdot \pi , so a + b + c + d = 53 + 6 + 19 + 5 = 83 a + b + c + d = 53 + 6 + 19 + 5 =\boxed{83} .

Yashas Ravi
Apr 15, 2019

Draw line O A OA and O B OB . Since O B = O A = x OB=OA=x and angle O P A = 270 OPA = 270 - angle O P B OPB , the law of cosines can be used. Let angle O P A = a OPA = a .

3 2 + 1 2 2 ( 3 ) ( 1 ) c o s ( a ) = 3 2 + 2 2 2 ( 3 ) ( 2 ) c o s ( 270 a ) 3^2 + 1^2 - 2(3)(1)*cos(a) = 3^2 + 2^2 - 2(3)(2)*cos(270-a) . This simplifies to 3 2 + 1 2 2 ( 3 ) ( 1 ) c o s ( a ) = 3 2 + 2 2 + 2 ( 3 ) ( 2 ) s i n ( a ) 3^2 + 1^2 - 2(3)(1)*cos(a) = 3^2 + 2^2 + 2(3)(2)*sin(a) . Let A = c o s ( a ) A=cos(a) , then s i n ( a ) = s q r t ( 1 A 2 ) sin(a) = sqrt(1-A^2) . By substitution, 9 6 A = 13 12 s q r t ( 1 A 2 9-6A = 13-12*sqrt(1-A^2 ). By solving the quadratic, we substitute the value of A A into 3 2 + 1 2 2 ( 3 ) ( 1 ) A = x 2 3^2 + 1^2 - 2(3)(1)*A=x^2 to find the square of the radius. By multiplying this by π π , we obtain an expression with a a , b b , c c , and d d . Then, a + b + c + d = 83 a+b+c+d=83 .

汶良 林
Mar 17, 2016

OAB is an isosceles triangle, with a OA=OB=R the radius.
Let M be the midpoint of base AB, and so OM is the altitude on the base.
Let P(0,0) in coordinate axis. So A(0,-1), B(2,0) and M(1,-1/2).
Slope of AB is 1/2, so slope of OM is - 2. M is on OM so, OM is Y = - 2X + 3/2. S i n c e O l i e s o n i t a s w e l l a s o n c i r c l e X 2 + Y 2 = 3 2 , X 2 + ( 2 X + 3 / 2 ) 2 = 9. S o l v i n g t h e q u a d r a t i c a n d g e t t i n g Y f r o m Y = 2 X + 3 / 2 , w e g e t , X = 6 ± 3 19 10 a n d Y = 3 6 19 10 . O i s ( X , Y ) O i s t o l e f t a n d a b o v e P ( 0 , 0 ) , w e t a k e + s i g n f o r Y , f o r X . R 2 = O A 2 = ( X 0 ) 2 + ( Y [ 1 ] ) 2 = ( 6 3 19 10 ) 2 + ( 3 + 6 19 10 + 1 ) 2 = 53 + 6 19 5 a + b + c + d = 83 \\Since~ O~ lies~ on~ it~ as~ well~ as~ on~ circle ~X^2 + Y^2 = 3^2,\\ \implies~ X^2 + (- 2X + 3/2)^2 = 9.\\ Solving~ the~ quadratic~ and~ getting ~Y ~from~Y = - 2X + 3/2, we~ get,\\ X= \dfrac{6\pm 3\sqrt{19}}{10}~~and~~Y = \dfrac{3\mp 6\sqrt{19}}{10}.~~O~is~(X,Y)\\O~ is~to~left~and~ above~ P(0,0),~ we~ take ~ +sign~ for ~~Y,~ - for~ X.\\\therefore~R^2=OA^2=(X-0)^2 + (Y- [-1])^2\\= \left(\dfrac{6- 3\sqrt{19}}{10}\right )^2 +\left(\dfrac{3+ 6\sqrt{19}}{10} + 1 \right)^2\\= \dfrac{53+ 6\sqrt{19}}{5}\\\therefore a+b+c+d=\boxed{\color{#D61F06}{83}}


Ahmed Essam
Jun 7, 2014

we know that O B = O A OB = OA so what we are going to do is finding what is equivalent to each of them and do the math :D

first of all let's assume that O P A = x OPA = x and O B = r OB = r and O A = r OA = r

in Triangle O B P OBP and from the cosine law

r 2 = 13 12 c o s ( 270 x ) r^2 = 13 - 12 cos(270-x) which is equal to

r 2 = 13 + 12 s i n ( x ) r^2 = 13 + 12 sin(x)

in Triangle O P A OPA and from the cosine law

r 2 = 10 6 c o s ( x ) r^2 = 10 - 6 cos(x)

so we can say that

10 6 c o s ( x ) 13 + 12 s i n ( x ) = 0 10-6cos(x) - 13 + 12 sin(x) = 0

3 + 6 c o s ( x ) + 12 s i n ( x ) = 0 3+6cos(x) + 12 sin(x) = 0

we can assume that t = t a n ( x 2 ) t=tan(\frac{x}{2})

then s i n ( x ) = 2 t 1 + t 2 sin(x) = \frac{2t}{1+t^2} and c o s ( x ) = 1 t 2 1 + t 2 cos(x) = \frac{1-t^2}{1+t^2}

so

3 + 3 t 2 1 + t 2 + 6 6 t 2 1 + t 2 + 24 t 1 + t 2 = 0 \frac{3+3t^2}{1+t^2} + \frac{6-6t^2}{1+t^2} + \frac{24t}{1+t^2} = 0

3 t 2 24 t 9 1 t 2 = 0 \frac{3t^2-24t-9}{-1-t^2} = 0 ... we multiply both sides by 1 t 2 -1-t^2

3 t 2 24 t 9 = 0 3t^2-24t-9 = 0 divide by 3 3 to get

t 2 8 t 3 = 0 t^2-8t-3=0

we solve and we get that

t = 4 + ( 19 ) t = 4 + \sqrt(19) and x = 166.3559152 x = 166.3559152 and we know that

r 2 = 13 + 12 s i n ( x ) r^2 = 13 + 12 sin(x) and it will be equal to

r 2 = 53 + 6 ( 19 ) 5 r^2 = \frac{53+6 \sqrt(19)}{5}

so the solution will be 35 + 6 + 19 + 5 = 83 35+6+19+5 = \boxed{83}

and that is the first solution

t = 4 ( 19 ) t=4-\sqrt(19) is the second solution but then x x will be acute which is refused and I don't know why ! :D ... I think this problem should have two answers

Nam Diện Lĩnh
May 26, 2014

We choose P P to be the Origin of the plane and A A , B B to be ( 0 , 1 ) (0,1) , ( 2 , 0 ) (2,0) respectively. The mid point M M of A B AB must be ( 1 , 1 2 ) (1, \frac{1}{2})

We have O O is the intersection of ( d ) (d) - the line which passes through M M and perpendicular to A B AB and ( P , 3 ) (P, 3) .

The equation of ( d ) (d) is 2 x y + 3 2 = 0 2x-y+\frac{3}{2}=0 The equation of ( P , 3 ) (P,3) is x 2 + y 2 = 9 x^2+y^2=9

To get the result, we calculate the squared of the radius of ( O ) (O) that is

r 2 = O B 2 = ( x O 2 ) 2 + y O 2 = x O 2 + y O 2 4 x O + 4 = 13 4 x O r^2=OB^2=(x_O-2)^2+y_O^2=x_O^2+y_O^2-4x_O+4=13-4x_O

due to O O is the intersection

We can calculate x O x_O by substitute y O = 2 x O + 3 2 ) y_O=2x_O+\frac{3}{2}) in x O 2 + y O 2 = 9 x_O^2+y_O^2=9 , solve it and choose x O < 0 x_O<0 (look at the figure)

We have

x O = 6 3 19 10 x_O=\frac{6-3\sqrt{19}}{10}

and thus

r 2 = 13 4 x O = 53 + 6 19 5 r^2=13-4x_O=\frac{53+6\sqrt{19}}{5}

Kevin Chad Cerezo
May 10, 2014

From the figure, we note that triangle AOB is isosceles such that AO=BO=x, where x is the radius of the circle.

∴ ∠OAP+∠PAB=∠ABO. Call ∠OAP α; ∠PAB β; and ∠ABO γ.

Our working inverse equation here is:

cos^(-1)⁡α+cos^(-1)⁡β=cos^(-1)⁡γ

From this, we can obtain that cos⁡(α+β)=cos⁡γ Also, applying the cosine law and trigonometric identity leads us to the following relations: cos⁡α=(x^2-8)/2x,cos⁡β=1/√5 ; sin⁡α=(2√(-x^4+20x^2-64))/2x, ⁡sin⁡β=2/√5 ; cos⁡γ=5/(2√5 x)

But cos⁡(α+β)=cos⁡γ is equivalent to cos⁡α cos⁡β-sin⁡α sin⁡β=cos⁡γ Plugging in the values, (x^2-8)/2x∙1/√5- (√(-x^4+20x^2-64))/2x∙ 2/√5=5/(2√5 x) (x^2-8)/(2√5 x)- (2√(-x^4+20x^2-64))/(2√5 x)=5/(2√5 x) x^2-13=-2√(-x^4+20x^2-64)

Squaring both sides, we have x^4-26x+169=4(-x^4+20x^2-64) 5x^4-106x^2+425=0 Let m be equal to x^2 such that 5m^2-106m+425=0 Getting the roots of m by applying the quadratic formula, m=(106±√(106^2-4(5)(425)))/(2(5)) Simplifying, m=(53±6√19)/5. The area of the circle can be inferred to as mπ. Therefore, a=53,b=6,c=19,d=5, and a+b+c+d=53+6+19+5= 83

Arjyaman Ghosh
Apr 23, 2014

Let us solve this problem with Co-ordinate Geometry let point P(0,0) A(0,-1), B(2,0) Now join AB and get the midpoint C(1,-0.5) Equation of AB: x-2y=2 Let the perpendicular line to AB is MC Equation of MC: 4x+2y=3 Now consider a circle Z with centre at P, x^2+y^2=9 Now the top intersecting point of Circle Z and MC is ( (3 (2 - Sqrt(19))/10) , (3 (1 + 2 Sqrt(19) )/10) ) Hence the intersecting point is O as "the the perpendicular line to the midpoint of any arc of a circle always passes through the centre of the circle" now we know the point O and from the question we know A & B from here we get Radius of the circle so the term [{a+bsqrt(c)}/d] is simply the term R^2 when R^2 we get [{53+6sqrt(19)}/5] so a=53, b=6, c=19, d=5 and a+b+c+d= 83

Sarath Ch
Apr 19, 2014

I took P to be origin and solved the equations.it will require less effort

Aaaaa Bbbbb
Apr 17, 2014

Denote circumscribed circle of triangle by CCT, circle with center 0, radius a by (O, a). CCT(PAB) x (O, 3) = {P, E} A B = 5 , P E = A B 2 ( A P c o s ( P A B ) ) = A B 2 ( 1 1 5 ) = ( 5 ) 2 ( 1 1 / 5 ) = 3 / 5 AB=\sqrt{5}, PE=AB-2(AP*cos(PAB))=AB-2(1*\frac{1}{\sqrt{5}})=\sqrt{(5)-2(1*1/\sqrt{5})}=3/\sqrt{5} O E = 3 2 ( P E / 2 ) 2 = 9 9 / 20 = 3 19 / 20 OE=\sqrt{3^2-(PE/2)^{2}}=\sqrt{9-9/20}=3*\sqrt{19/20} R = ( O E + 2 / 5 ) 2 + ( 5 / 2 ) 2 = ( 3 19 / 20 + 2 / 5 ) 2 + ( 5 / 2 ) 2 R=\sqrt{(OE+2/\sqrt{5})^{2}+(\sqrt{5}/2)^{2}}=\sqrt{(3*\sqrt{19/20}+2/\sqrt{5})^{2}+(\sqrt{5}/2)^{2}} R 2 = ( 3 19 / 20 + 2 / 5 ) 2 + ( 5 / 2 ) 2 R^{2}=(3*\sqrt{19/20}+2/\sqrt{5})^{2}+(\sqrt{5}/2)^{2} = ( 3 19 + 4 ) 2 / 20 + 5 / 4 = 171 + 16 + 24 19 + 25 / 20 = ( 53 + 6 19 ) / 5 =(3*\sqrt{19}+4)^{2}/20+5/4=171+16+24\sqrt{19}+25/20=(53+6\sqrt{19})/5 a + b + c + d = 83 a+b+c+d=\boxed{83}

Ricky Theising
Apr 16, 2014

Synthetic one (Without Trigonometry)

Suppose that P 1 P_1 and P 2 P_2 be points on lines A P AP and B P BP respectively such that O P 1 P = 9 0 \angle{OP_1P = 90^{\circ}} and O P 2 P = 9 0 \angle{OP_2P} = 90^{\circ} . Denote the lenght of O P 1 OP_1 and O P 2 OP_2 by x x and y y respectively and let the radii be r r , then, by simple application of pytagorean theorem, we have O P 1 2 + O P 2 2 = x 2 + y 2 = O P 2 = 9 ( 1 ) OP_1^2 + OP_2^2 = x^2 + y^2 = OP^2 = 9 \cdots (1) O A 2 = r 2 = O P 1 2 + P 1 A 2 = x 2 + ( 1 + y ) 2 = x 2 + y 2 + 2 y + 1 = 10 + 2 y ( 2 ) OA^2 = r^2 = OP_1^2 + P_1A^2 = x^2 + (1+y)^2 = x^2 + y^2 + 2y + 1 = 10 + 2y \cdots (2) O B 2 = r 2 = O P 2 2 + P 2 B 2 = y 2 + ( 2 + x ) 2 = x 2 + y 2 + 4 x + 4 = 13 + 4 x ( 3 ) OB^2 = r^2 = OP_2^2 + P_2B^2 = y^2 + (2+x)^2 = x^2 + y^2 + 4x + 4 = 13 + 4x \cdots(3) So, we get x = r 2 13 4 x = \frac{r^2-13}{4} and y = r 2 10 2 y = \frac{r^2-10}{2} . Now, substitute these into ( 1 ) (1) : r 4 20 r 2 + 100 4 + r 4 26 r 2 + 169 16 = 9 \frac{r^4-20r^2+100}{4} + \frac{r^4-26r^2+169}{16} = 9

After some manipulation, the equation turns into 5 r 4 106 r 2 + 425 = 0 r 2 = 106 + 12 19 10 = 53 + 6 19 5 5r^4 - 106r^2 + 425 = 0 \longrightarrow r^2 = \frac{106 + 12\sqrt{19}}{10} = \frac{53 + 6\sqrt{19}}{5} So, a + b + c + d = 53 + 6 + 19 + 5 = 83 a + b + c + d = 53 + 6 + 19 + 5 = \boxed{83} .

Milind Mehta
Apr 13, 2014

Doing\quad it\quad with\quad co-ordinate\quad geometry\quad is\quad much\quad simpler.\ Take\quad O\quad as\quad origin\quad i.e.(0,0)\ P\quad as\quad (x,y)\ A\quad as\quad (x,y-1)\ B\quad as\quad (x+2,y)\ Given\quad PO\quad =\quad 3,\quad \ \dot { .\quad . } \quad { x }^{ 2 }+{ y }^{ 2 }=9\quad ...(1)\quad \quad \quad \quad \quad \quad \quad (Distance\quad formula)\ OA=OB\quad (Radius\quad of\quad the\quad circle)\ \dot { .\quad . } \sqrt { { x }^{ 2 }+{ (y-1) }^{ 2 } } =\sqrt { (x+2)^{ 2 }+{ y }^{ 2 } } \quad (Distance\quad formula)\ Squaring\quad both\quad sides\quad and\quad solving\quad further\quad we\quad get\ 4x+2y=-3\quad ...(2)\ Substituting\quad y=\frac { -3-4x }{ 2 } \quad in\quad (1)\quad we\quad get\quad a\quad quadratic\quad eq\quad in\quad terms\quad of\quad x\ i.e.\quad 20{ x }^{ 2 }+24x-27=0\ whose\quad roots\quad are\quad \frac { -6+3\sqrt { 19 } }{ 10 } \quad and\quad \frac { -6-3\sqrt { 19 } }{ 10 } .\ Discarding\quad the\quad second\quad root\quad since\quad x\quad needs\quad to\quad be\quad positive\quad as\quad it\quad lies\quad to\quad right\quad side\quad of\quad the\quad origin\quad O.\ Now\quad we\quad know\quad Radius\quad r\quad =\quad OB.\ { r }^{ 2 }\quad =\quad (x+2)^{ 2 }+{ y }^{ 2 }\ { r }^{ 2 }\quad =\quad { x }^{ 2 }+4x+4+{ y }^{ 2 }\ { r }^{ 2 }\quad =\quad 13+4x\quad \quad \quad \quad (Since\quad { x }^{ 2 }+{ y }^{ 2 }=9)\ Taking\quad x\quad as\quad \frac { -6+3\sqrt { 19 } }{ 10 } \ { r }^{ 2 }\quad =\quad \frac { 53+6\sqrt { 19 } }{ 5 } \ Clearly\quad a=53,\quad b=6,\quad c=19,\quad d=5\ \dot { .\quad . } \quad a+b+c+d\quad =\quad 83\

Is it correct

Rohit Singh - 7 years, 1 month ago

Fixed it?

D o i n g i t w i t h c o o r d i n a t e g e o m e t r y i s m u c h s i m p l e r . T a k e O a s o r i g i n i . e . ( 0 , 0 ) P a s ( x , y ) A a s ( x , y 1 ) B a s ( x + 2 , y ) G i v e n P O = 3 , . . ˙ x 2 + y 2 = 9 . . . ( 1 ) ( D i s t a n c e f o r m u l a ) O A = O B ( R a d i u s o f t h e c i r c l e ) . . ˙ x 2 + ( y 1 ) 2 = ( x + 2 ) 2 + y 2 ( D i s t a n c e f o r m u l a ) S q u a r i n g b o t h s i d e s a n d s o l v i n g f u r t h e r w e g e t 4 x + 2 y = 3 . . . ( 2 ) S u b s t i t u t i n g y = 3 4 x 2 i n ( 1 ) w e g e t a q u a d r a t i c e q i n t e r m s o f x i . e . 20 x 2 + 24 x 27 = 0 w h o s e r o o t s a r e 6 + 3 19 10 a n d 6 3 19 10 . D i s c a r d i n g t h e s e c o n d r o o t s i n c e x n e e d s t o b e p o s i t i v e a s i t l i e s t o r i g h t s i d e o f t h e o r i g i n O . N o w w e k n o w R a d i u s r = O B . r 2 = ( x + 2 ) 2 + y 2 r 2 = x 2 + 4 x + 4 + y 2 r 2 = 13 + 4 x ( S i n c e x 2 + y 2 = 9 ) T a k i n g x a s 6 + 3 19 10 r 2 = 53 + 6 19 5 C l e a r l y a = 53 , b = 6 , c = 19 , d = 5 . . ˙ a + b + c + d = 83 Doing\quad it\quad with\quad co-ordinate\quad geometry\quad is\quad much\quad simpler.\ Take\quad O\quad as\quad origin\quad i.e.(0,0)\ P\quad as\quad (x,y)\ A\quad as\quad (x,y-1)\ B\quad as\quad (x+2,y)\ Given\quad PO\quad =\quad 3,\quad \ \dot { .\quad . } \quad { x }^{ 2 }+{ y }^{ 2 }=9\quad ...(1)\quad \quad \quad \quad \quad \quad \quad (Distance\quad formula)\ OA=OB\quad (Radius\quad of\quad the\quad circle)\ \dot { .\quad . } \sqrt { { x }^{ 2 }+{ (y-1) }^{ 2 } } =\sqrt { (x+2)^{ 2 }+{ y }^{ 2 } } \quad (Distance\quad formula)\ Squaring\quad both\quad sides\quad and\quad solving\quad further\quad we\quad get\ 4x+2y=-3\quad ...(2)\ Substituting\quad y=\frac { -3-4x }{ 2 } \quad in\quad (1)\quad we\quad get\quad a\quad quadratic\quad eq\quad in\quad terms\quad of\quad x\ i.e.\quad 20{ x }^{ 2 }+24x-27=0\ whose\quad roots\quad are\quad \frac { -6+3\sqrt { 19 } }{ 10 } \quad and\quad \frac { -6-3\sqrt { 19 } }{ 10 } .\ Discarding\quad the\quad second\quad root\quad since\quad x\quad needs\quad to\quad be\quad positive\quad as\quad it\quad lies\quad to\quad right\quad side\quad of\quad the\quad origin\quad O.\ Now\quad we\quad know\quad Radius\quad r\quad =\quad OB.\ { r }^{ 2 }\quad =\quad (x+2)^{ 2 }+{ y }^{ 2 }\ { r }^{ 2 }\quad =\quad { x }^{ 2 }+4x+4+{ y }^{ 2 }\ { r }^{ 2 }\quad =\quad 13+4x\quad \quad \quad \quad (Since\quad { x }^{ 2 }+{ y }^{ 2 }=9)\ Taking\quad x\quad as\quad \frac { -6+3\sqrt { 19 } }{ 10 } \ { r }^{ 2 }\quad =\quad \frac { 53+6\sqrt { 19 } }{ 5 } \ Clearly\quad a=53,\quad b=6,\quad c=19,\quad d=5\ \dot { .\quad . } \quad a+b+c+d\quad =\quad 83

Daniel Liu - 7 years, 1 month ago

Log in to reply

If you use O as (0,0) & denote h as the height Tr. OAB and let P be (x,y) then: x²+y²=1 and (x-√ 5)²+y²=4 which gives x=1/√ 5, y=2/√ 5 the other root being inadmissible. Further, (2/√5 -h)²+(1/√5 -√5/2)²=9 while area of the circle = Pi*(h²+5/4) = (53+6√19)Pi/5.

Ajit Athle - 7 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...