it's Clobberin time

Calculus Level 4

Find the sum of the greatest and least value of the function X Y ( R R ) X\to Y~ (R\to R)

f ( x ) = x 4 x 8 + 2 x 6 4 x 4 + 8 x 2 + 16 \huge{f(x)=\frac{x^{4}}{x^{8}+2x^{6}-4x^{4}+8x^{2}+16}}


The answer is 0.08333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 12, 2015

f ( x ) = x 4 x 8 + 2 x 6 4 x 4 + 8 x 2 + 16 f(x) = \dfrac {x^4}{x^8+2x^6-4x^4+8x^2+16}

We note that both x 4 0 x^4 \ge 0 and x 8 + 2 x 6 4 x 4 + 8 x 2 + 16 > 0 x^8+2x^6-4x^4+8x^2+16 > 0 are even, therefore, f ( x ) f(x) is even and positive and the least value is f ( 0 ) = 0 f(0) = 0 when x 4 = 0 x^4 = 0 .

f ( x ) = x 4 x 8 + 2 x 6 4 x 4 + 8 x 2 + 16 = 1 x 4 + 2 x 2 4 + 8 x 2 + 16 x 4 = 1 ( x 2 + 4 x 2 ) 2 8 + 2 ( x 2 + 4 x 2 ) 4 = 1 ( x 2 + 4 x 2 ) 2 + 2 ( x 2 + 4 x 2 ) 12 = 1 ( x 2 + 4 x 2 ) 2 + 2 ( x 2 + 4 x 2 ) + 1 13 = 1 ( x 2 + 1 + 4 x 2 ) 2 13 \begin{aligned} f(x) & = \dfrac {x^4}{x^8+2x^6-4x^4+8x^2+16} \\ & = \dfrac{1}{x^4+2x^2-4+\frac{8}{x^2}+\frac{16}{x^4}} \\ & = \dfrac{1}{\left( x^2 + \frac{4}{x^2}\right)^2 - 8 + 2\left( x^2 + \frac{4}{x^2}\right) - 4} \\ & = \dfrac{1}{\left( x^2 + \frac{4}{x^2}\right)^2 + 2\left( x^2 + \frac{4}{x^2}\right) - 12} \\ & = \dfrac{1}{\left( x^2 + \frac{4}{x^2}\right)^2 + 2\left( x^2 + \frac{4}{x^2}\right) +1 - 13} \\ & = \dfrac{1}{\left( x^2 + 1 + \frac{4}{x^2}\right)^2 - 13} \end{aligned}

f ( x ) f(x) is maximum, when x 2 + 1 + 4 x 2 x^2 + 1 + \frac{4}{x^2} is minimum.

d d x ( x 2 + 1 + 4 x 2 ) = 2 x 8 x 3 \dfrac {d}{dx} \left( x^2 + 1 + \dfrac{4}{x^2}\right) = 2x - \dfrac{8}{x^3}

Equating to 0 2 x 8 x 3 = 0 2 x 4 = 8 x 4 = 4 x = 2 0\quad \Rightarrow 2x - \dfrac{8}{x^3} = 0 \quad \Rightarrow 2x^4 = 8 \quad \Rightarrow x^4 = 4 \quad \Rightarrow x = \sqrt{2}

The greatest value of f ( x ) f(x) is:

f ( 2 ) = 1 ( ( 2 ) 2 + 1 + 4 ( 2 ) 2 ) 2 13 = 1 ( 2 + 1 + 2 ) 2 13 = 1 12 = 0.08333 \begin{aligned} f(\sqrt{2}) & = \dfrac{1}{\left( (\sqrt{2})^2 + 1 + \frac{4}{(\sqrt{2})^2}\right)^2 - 13} \\ & = \dfrac {1}{(2+1+2)^2 -13} \\ & = \dfrac{1}{12} = \boxed{0.08333} \end{aligned}

Nice work sir!!

Parth Lohomi - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...