∫ 0 π / 2 sin θ cos θ 2 5 sin 2 θ + 9 cos 2 θ d θ ∫ 0 π / 2 ( 5 cos 2 x + 3 sin 2 x ) d x = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The first integration can be solved without the knowledge of beta and gamma functions.
Log in to reply
It can be solved also by using ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x
Log in to reply
Thanks. I am so used to it. I will change the solution.
The numerator can be solved as
I 1 = ∫ 0 π / 2 ( 5 cos 2 x + 3 sin 2 x ) d x = ∫ 0 π / 2 ( 2 cos 2 x + 3 ) d x = ∫ 0 π / 2 ( cos ( 2 x ) + 4 ) d x = 2 π
The denominator can be solved as
I 2 = ∫ 0 π / 2 sin θ cos θ 2 5 sin 2 θ + 9 cos 2 θ d θ = 2 1 ∫ 0 π / 2 sin ( 2 θ ) 1 6 sin 2 θ + 9 d θ
Make substitution
1 6 sin 2 θ + 9 = u ⟹ 1 6 sin ( 2 θ ) d θ = d u
So, our integral becomes
3 2 1 ∫ t d t = 4 8 1 t 3 / 2 = 4 8 1 ( 1 6 sin 2 θ + 9 ) 3 / 2
Putting required limits gives
I 2 = 4 8 9 8 = 2 4 4 9
Thus, I 2 I 1 = 4 9 / 2 4 2 π = 4 9 4 8 π .
Problem Loading...
Note Loading...
Set Loading...
I 1 = ∫ 0 2 π 5 cos 2 x + 3 sin 2 x d x = 2 1 ∫ 0 2 π 5 cos 2 x + 3 sin 2 x + 5 sin 2 x + 3 cos 2 x d x = 4 ∫ 0 2 π 1 d x = 2 π Using ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x
I 2 = ∫ 0 2 π sin x cos x 2 5 sin 2 x + 9 cos 2 x d x = ∫ 9 2 5 3 2 u d u = 4 8 u u ∣ ∣ ∣ ∣ 9 2 5 = 2 4 4 9 Let u = 2 5 cos 2 x + 9 sin 2 x , d u = 3 2 sin x cos x d x
⟹ I 2 I 1 = 2 4 4 9 2 π = 4 9 4 8 π