It's definite so outcomes definite

Calculus Level 3

0 π / 2 ( 5 cos 2 x + 3 sin 2 x ) d x 0 π / 2 sin θ cos θ 25 sin 2 θ + 9 cos 2 θ d θ = ? \frac{\displaystyle \int_{0}^{\pi/2} ( 5 \cos^2 x + 3 \sin^2 x) \ dx}{ \displaystyle \int_{0}^{\pi/2} \sin \theta \cos \theta \sqrt{25 \sin^2 \theta + 9\cos^2 \theta} \ d\theta} = \, ?

48 π 49 \frac{48\pi}{49} 24 π 40 \frac{24\pi}{40} 8 π 17 \frac{8\pi}{17} 9 π 25 \frac{9\pi}{25}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I 1 = 0 π 2 5 cos 2 x + 3 sin 2 x d x Using a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π 2 5 cos 2 x + 3 sin 2 x + 5 sin 2 x + 3 cos 2 x d x = 4 0 π 2 1 d x = 2 π \begin{aligned} I_1 & = \int_0^\frac \pi 2 5\cos^2 x + 3 \sin^2 x \ dx & \small \color{#3D99F6} \text{Using }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_0^\frac \pi 2 5\cos^2 x + 3\sin^2 x + 5\sin^2 x + 3 \cos^2 x \ dx \\ & = 4 \int_0^\frac \pi 2 1\ dx = 2 \pi \end{aligned}

I 2 = 0 π 2 sin x cos x 25 sin 2 x + 9 cos 2 x d x Let u = 25 cos 2 x + 9 sin 2 x , d u = 32 sin x cos x d x = 9 25 u 32 d u = u u 48 9 25 = 49 24 \begin{aligned} I_2 & = \int_0^\frac \pi 2 \sin x \cos x \sqrt{\color{#3D99F6}25\sin^2 x + 9 \cos^2 x} \ dx & \small \color{#3D99F6} \text{Let }u= 25\cos^2 x + 9 \sin^2 x, \ du = 32\sin x \cos x \ dx \\ & = \int_9^{25} \frac {\sqrt u}{32} \ du \\ & = \frac {u\sqrt u}{48}\bigg|_9^{25} \\ & = \frac {49}{24} \end{aligned}

I 1 I 2 = 2 π 49 24 = 48 π 49 \implies \dfrac {I_1}{I_2} = \dfrac {2\pi}{\frac {49}{24}} = \boxed{\dfrac {48\pi}{49}}

The first integration can be solved without the knowledge of beta and gamma functions.

Tapas Mazumdar - 4 years, 3 months ago

Log in to reply

It can be solved also by using a b f ( x ) d x = a b f ( a + b x ) d x \int_{a}^{b} f(x)dx=\int_{a}^{b} f(a+b-x) dx

Kushal Bose - 4 years, 3 months ago

Log in to reply

Thanks. I am so used to it. I will change the solution.

Chew-Seong Cheong - 4 years, 3 months ago
Tapas Mazumdar
Mar 2, 2017

The numerator can be solved as

I 1 = 0 π / 2 ( 5 cos 2 x + 3 sin 2 x ) d x = 0 π / 2 ( 2 cos 2 x + 3 ) d x = 0 π / 2 ( cos ( 2 x ) + 4 ) d x = 2 π \begin{aligned} I_1 = \displaystyle \int_0^{{\pi}/{2}} \left( 5 \cos^2 x + 3 \sin^2 x \right) \ dx &= \displaystyle \int_0^{{\pi}/{2}} \left( 2 \cos^2 x + 3 \right) \ dx \\ &= \displaystyle \int_0^{{\pi}/{2}} \left( \cos(2x) + 4 \right) \ dx \\ &= 2 \pi \end{aligned}

The denominator can be solved as

I 2 = 0 π / 2 sin θ cos θ 25 sin 2 θ + 9 cos 2 θ d θ = 1 2 0 π / 2 sin ( 2 θ ) 16 sin 2 θ + 9 d θ I_2 = \displaystyle \int_0^{{\pi}/{2}} \sin \theta \cos \theta \sqrt{25 \sin^2 \theta + 9 \cos^2 \theta} \ d\theta = \dfrac 12 \displaystyle \int_0^{{\pi}/{2}} \sin (2 \theta) \sqrt{16 \sin^2 \theta + 9 } \ d\theta

Make substitution

16 sin 2 θ + 9 = u 16 sin ( 2 θ ) d θ = d u 16 \sin^2 \theta + 9 = u \implies 16 \sin (2 \theta) \ d\theta = du

So, our integral becomes

1 32 t d t = 1 48 t 3 / 2 = 1 48 ( 16 sin 2 θ + 9 ) 3 / 2 \begin{aligned} \dfrac{1}{32} \displaystyle \int \sqrt{t} \ dt &= \dfrac{1}{48} t^{3/2} \\ &= \dfrac{1}{48} {(16 \sin^2 \theta + 9)} ^{3/2} \end{aligned}

Putting required limits gives

I 2 = 98 48 = 49 24 I_2 = \dfrac{98}{48} = \dfrac{49}{24}

Thus, I 1 I 2 = 2 π 49 / 24 = 48 π 49 \dfrac{I_1}{I_2} = \dfrac{2\pi}{{49}/{24}} = \boxed{\dfrac{48 \pi}{49}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...