A calculus problem by Kushal Bose

Calculus Level 4

Evaluate the following Integral

0 1 0 e x 2 / y 3 d x d y \large \int_0^1 \int_{0}^{\infty} e^{-x^2/y^3} \, dx \ dy

If your answer will be in the form a π b c \dfrac{a \sqrt[b]{\pi}}{c} where a , b , c a,b,c are co-prime positive integers then submit a + b + c a+b+c


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

A generalized Gaussian integral states that 0 e x 2 a d x = a π 2 \displaystyle \int_0^\infty e^{-\dfrac{x^2}{a}}\; dx = \dfrac{\sqrt{a\pi}}{2} , so the integration turns after evaluating the inner integral as y = 0 1 y 3 π 2 d y = π 5 \displaystyle \int_{y=0}^1 \dfrac{\sqrt{y^3 \pi}}{2}\; dy = \dfrac{\sqrt{\pi}}{5} . This makes the answer 8 \boxed{8}

We can even apply gamma.

Md Zuhair - 4 years ago
Tapas Mazumdar
May 29, 2017

Let

I = 0 1 ( 0 e x 2 / y 3 d x ) I 1 d y I = \int_0^1 \underbrace{\left( \int_0^{\infty} e^{- {x^2}/{y^3}} \,dx \right)}_{I_1} \,dy

We shall compute I 1 I_1 first.

Let x 2 y 3 = t 2 x y 3 d x = d t \dfrac{x^2}{y^3} = t \implies \dfrac{2x}{y^3} \,dx = \,dt and 0 0 \displaystyle \int_0^{\infty} \mapsto \int_0^{\infty} and so we have

I 1 = 0 e x 2 / y 3 d x = 0 e x 2 / y 3 y 3 2 x 2 x y 3 d x = y 3 2 0 e t 1 t y 3 d t = y 3 2 0 t 1 / 2 e t d t = y 3 2 Γ ( 1 2 ) = y 3 2 π = π 2 y 3 / 2 \begin{aligned} I_1 &= \int_0^{\infty} e^{- {x^2}/{y^3}} \,dx \\ &= \int_0^{\infty} e^{- {x^2}/{y^3}} \cdot \dfrac{y^3}{2x} \cdot \dfrac{2x}{y^3} \,dx \\ &= \dfrac{y^3}{2} \int_0^{\infty} e^{-t} \cdot \dfrac{1}{\sqrt{ty^3}} \,dt \\ &= \dfrac{\sqrt{y^3}}{2} \int_0^{\infty} t^{-{1}/{2}} e^{-t} \,dt \\ &= \dfrac{\sqrt{y^3}}{2} \cdot \Gamma \left( \dfrac 12 \right) \\ &= \dfrac{\sqrt{y^3}}{2} \cdot \sqrt{\pi} \\ &= \dfrac{\sqrt{\pi}}{2} \cdot y^{{3}/{2}} \end{aligned}

Thus

I = 0 1 π 2 y 3 / 2 d y = π 2 × 2 5 × 1 = π 5 \begin{aligned} I &= \int_0^1 \dfrac{\sqrt{\pi}}{2} \cdot y^{{3}/{2}} \,dy \\ &= \dfrac{\sqrt{\pi}}{2} \times \dfrac 25 \times 1 \\ &= \dfrac{\sqrt{\pi}}{5} \end{aligned}

So we have

a = 1 b = 2 c = 5 a + b + c = 8 a = 1 \\ b=2 \\ c=5 \\ \implies a+b+c = \boxed{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...