An algebra problem by A Former Brilliant Member

Algebra Level 3

There are 65536 bottles labelled from 1 to 65536. The bottle number i contains i chocolates. These bottles are distributed among 256 boys such that each boy gets the same number of bottles and the same number of chocolates. Can a boy have both the bottle numbers 978 and 2253?

No Insufficient information Yes

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Total number of bottles = 2 16 Number of bottles per boy = 2 16 2 8 = 2 8 Total number of chocolates = i = 1 2 16 i = 2 16 ( 2 16 + 1 ) 2 = 2 15 ( 2 16 + 1 ) Number of chocolates per boy = 2 15 ( 2 16 + 1 ) 2 8 = 2 7 ( 2 16 + 1 ) Average number of chocolates in a bottle for a given boy = ( 2 16 + 1 ) 2 Now group the bottles into pairs so that each pair is denoted as, ( i , 2 16 + 1 i ) where i denotes the bottle number Note that the average number of chocolates in each pair is ( 2 16 + 1 ) 2 There will be 2 15 pairs in total A boy can be given any 2 7 such pairs Thus it is possible for a given boy to have any 2 bottle numbers, In fact it is possible for a given boy to have any 128 bottle numbers of his choice \begin{aligned} \text{Total number of bottles}&=2^{16}\\ \text{Number of bottles per boy}&=\dfrac{2^{16}}{2^8}\\ &=2^8\\ \text{Total number of chocolates}&=\sum_{i=1}^{2^{16}} i\\ &= \dfrac{2^{16}(2^{16}+1)}{2}\\ &=2^{15}(2^{16}+1)\\ \text{Number of chocolates per boy}&= \dfrac{2^{15}(2^{16}+1)}{2^8}\\ &=2^{7}(2^{16}+1)\\\\ \text{Average number of chocolates} \\ \text{in a bottle for a given boy}&=\dfrac{(2^{16}+1)}{2}\\\\ \text{Now group the bottles into pairs}&\text{ so that each pair is denoted as,}(i,2^{16}+1-i)\hspace{4mm}\color{#3D99F6}\small\text{where i denotes the bottle number}\\ \text{Note that the average number}&\text{ of chocolates in each pair is }\dfrac{(2^{16}+1)}{2}\\ \text{There will be } 2^{15} \text{ pairs}\text{ in total}&\\ \text{A boy can be given any } 2^7 \text{ such}&\text { pairs}\\ \text{Thus it is possible for a given boy}&\text{to have any 2 bottle numbers,}\\ \text{In fact it is possible for a given boy}&\text{to have any 128 bottle numbers of his choice}\end{aligned}

Nice. Now solve the same problem for 66049 bottles distributed equally among 257 boys.

A Former Brilliant Member - 2 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...