A number theory problem by Shivam Agrawal

2 + 395 397 ! + 396 ! 396 + 396 398 ! + 397 ! 397 + + 1728 1730 ! + 1729 ! 1729 \large 2+ \frac{395\cdot 397!+396!}{396} +\frac{396\cdot 398!+397!}{397}+ \cdots+ \frac{1728\cdot 1730!+ 1729!}{1729}

If the number above is of the form ( 2017 a ) ! ( 1729 b ) ! + ( 5 c ) ! (2017-a)! -(1729-b)! +(5-c)! , where a a , b b , and c c are positive integers, find the last digit of a b c \Large a^{b^{c}} .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Dec 6, 2017

Note that ( j 1 ) × ( j + 1 ) ! + j ! j = j × j ! = ( j + 1 ) ! j ! \frac{(j-1) \times (j+1)! + j!}{j} \;= \; j \times j! \; = \; (j+1)! - j! for any integer j j , so the initial sum is 2 + j = 396 1729 ( ( j + 1 ) ! j ! ) = 1730 ! 396 ! + 2 ! 2 + \sum_{j=396}^{1729}\big((j+1)! - j!\big) \; = \; 1730! - 396! + 2! so that a = 287 a = 287 , b = 1333 b = 1333 and c = 3 c=3 . Let X = a b c X = a^{b^c} .

Since a a is odd, so is X X , and hence X 1 ( m o d 2 ) X \equiv 1 \pmod{2} . On the other hand, a = 287 2 ( m o d 5 ) a = 287 \equiv 2 \pmod{5} , and hence a 4 1 ( m o d 5 ) a^4 \equiv 1 \pmod{5} . Since b = 1333 1 ( m o d 4 ) b = 1333 \equiv 1 \pmod{4} we see that b c 1 ( m o d 4 ) b^c \equiv 1 \pmod{4} , and hence X a 2 ( m o d 5 ) X \equiv a \equiv 2 \pmod{5} . Thus we deduce that X 7 ( m o d 10 ) X \equiv \boxed{7} \pmod{10} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...