It's funny

Algebra Level 2

If a + 1 a = 2 a+\dfrac{1}{a}=2 , find the value of: a n + 1 a n \large a^n+\frac{1}{a^n}

where n = 2 k n=2^k ; k N k\in \mathbb N .

Can't be ditermined 0 1 2 \infty

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Given that a + 1 a = 2 a+\dfrac 1a = 2 . Multiplying a a throughout and rearrange a 2 2 a + 1 = 0 a^2 - 2a + 1 = 0 , ( a 1 ) 2 = 0 \implies (a-1)^2 = 0 a = 1 \implies a = 1 . Therefore, a n + 1 a n = 1 + 1 = 2 a^n + \dfrac 1{a^n} = 1+1 = 2 for all n Z n \in \mathbb Z .

Md Mehedi Hasan
Nov 5, 2017

a n + 1 a n = a 2 k + 1 a 2 k = ( a 2 k 1 ) 2 + ( 1 a 2 k 1 ) 2 = ( a 2 k 1 + 1 a 2 k 1 ) 2 2 = { ( a 2 k 2 + 1 a 2 k 2 ) 2 2 } 2 2 = { ( a 2 k 2 + 1 a 2 k 2 ) 2 2 } 2 2 = [ { ( a 2 k k + 1 a 2 k k ) 2 2 } 2 . . . . . . . . . ] 2 2 = [ { ( a + 1 a ) 2 2 } 2 . . . . . . . . . ] 2 2 = [ { ( 2 ) 2 2 } 2 . . . . . . . . . ] 2 2 = [ { 4 2 } 2 . . . . . . . . . ] 2 2 = 4 2 = 2 \large{a^{ n }+\frac { 1 }{ a^{ n } } \\ =a^{ 2^{ k } }+\frac { 1 }{ a^{ 2^{ k } } } \\ =(a^{ 2^{ k-1 } })^{ 2 }+\left( \frac { 1 }{ a^{ 2^{ k-1 } } } \right) ^{ 2 }\\ =\left( a^{ 2^{ k-1 } }+\frac { 1 }{ a^{ 2^{ k-1 } } } \right) ^{ 2 }-2\\ =\left\{ \left( a^{ 2^{ k-2 } }+\frac { 1 }{ a^{ 2^{ k-2 } } } \right) ^{ 2 }-2 \right\} ^{ 2 }-2\\ =\left\{ \left( a^{ 2^{ k-2 } }+\frac { 1 }{ a^{ 2^{ k-2 } } } \right) ^{ 2 }-2 \right\} ^{ 2 }-2\\ =\left[ \left\{ \left( a^{ 2^{ k-k } }+\frac { 1 }{ a^{ 2^{ k-k } } } \right) ^{ 2 }-2 \right\} ^{ 2 }......... \right] ^{ 2 }-2\\ =\left[ \left\{ \left( a+\frac { 1 }{ a } \right) ^{ 2 }-2 \right\} ^{ 2 }......... \right] ^{ 2 }-2\\ =\left[ \left\{ \left( 2 \right) ^{ 2 }-2 \right\} ^{ 2 }......... \right] ^{ 2 }-2\\ =\left[ \left\{ 4-2 \right\} ^{ 2 }......... \right] ^{ 2 }-2\\ =4-2\\ =\boxed { 2 } }

I didn't understand your solution.

Munem Shahriar - 3 years, 7 months ago

Log in to reply

In 4th line, I use a 2 + b 2 = ( a + b ) 2 2 a b a^2+b^2=(a+b)^2-2ab formula. If I apply this formula in every line, one time 7th line come. Then I can input the value of a + b = 2 a+b=2 . Then every time this 2 2 will square and minus 2 2 and remain 2 2 . In this way, at last the result come 2 2

Md Mehedi Hasan - 3 years, 7 months ago

It's a long and hard way to solve the problem this way. The one of @Chew-Seong Cheong is way faster!

Peter van der Linden - 3 years, 7 months ago

Log in to reply

Yes, I agree. But it's also a general process! Thanks for comment.

Md Mehedi Hasan - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...