It's getting too long!

Calculus Level 3

If an antiderivative of x 4 e x \large x^4 e^x is in the form e x ( A x 4 B x 3 + C x 2 D x + E ) e^x\left(Ax^4 - Bx^3 + Cx^2 - Dx + E\right) , where A , B , C , D A,B,C,D and E E are positive integers , find A + B + C + D + E A+B+C+D+E .

Notation : e 2.71828 e \approx 2.71828 is the Euler's number .


The answer is 65.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Rishabh Jain
Jun 14, 2016

x 4 e x d x = e x ( A x 4 B x 3 + C x 2 D x + E ) + c o n s t a n t \displaystyle\int x^4e^x \ dx = e^x\left(Ax^4 - Bx^3 + Cx^2 - Dx + E\right) + \small \color{grey}{constant}

Differentiate both sides w.r.t x:-

x 4 e x = e x ( A x 4 + ( 4 A B ) x 3 + ( C 3 B ) x 2 + ( 2 C D ) x + E D ) x^4e^x=e^x(Ax^4+(4A-B)x^3+(C-3B)x^2+(2C-D)x+E-D)

Comparing coefficients , we get:- A = 1 , B = 4 A = 4 , C = 3 B = 12 , E = D = 2 C = 24 A=1,B=4A=4,C=3B=12,E=D=2C=24 Hence, A + B + C + D + E = 65 A+B+C+D+E=\large\boxed{65}

Did it the same way. Using 4 times integration by parts seems a bit work loaded when the form of the integral is already given.

Kai Ott - 4 years, 12 months ago

Log in to reply

Yep!! So true :-)

Rishabh Jain - 4 years, 12 months ago
Hobart Pao
Jun 14, 2016

Use tabular integration by parts.

x 4 e x x^4 \quad e^x 4 x 3 e x 4x^3 \quad e^x 12 x 2 e x 12x^2 \quad e^x 24 x e x 24x \quad e^x 24 e x 24 \quad e^x 0 e x 0 \quad e^x

You multiply diagonally and alternate the signs.

This gives: x 4 e x 4 x 3 e x + 12 x 2 e x 24 x e x + 24 e x + C x^4 e^x - 4x^3 e^x + 12x^2 e^x - 24x e^x + 24 e^x + C

Summing together the absolute value of all coefficients (which was what was asked for ) is 1 + 4 + 12 + 24 + 24 = 65 1 + 4 + 12 + 24 + 24 = \boxed{65}

learned something new thank you for posting . +1

Pawan pal - 4 years, 11 months ago
Chew-Seong Cheong
Jun 14, 2016

By integration by parts:

I = x 4 e x d x = x 4 e x 4 x 3 e x d x = x 4 e x 4 x 3 e x + 12 x 2 e x d x = x 4 e x 4 x 3 e x + 12 x 2 e x 24 x e x d x = x 4 e x 4 x 3 e x + 12 x 2 e x 24 x e x + 24 e x d x = x 4 e x 4 x 3 e x + 12 x 2 e x 24 x e x + 24 e x + c o n s t a n t = e x ( x 4 4 x 3 + 12 x 2 24 x + 24 ) + c o n s t a n t \begin{aligned} I & = \int x^4e^x \ dx \\ & = x^4 e^x - \int 4x^3e^x \ dx \\ & = x^4 e^x - 4x^3e^x + \int 12x^2e^x \ dx \\ & = x^4 e^x - 4x^3e^x + 12x^2e^x - \int 24xe^x \ dx \\ & = x^4 e^x - 4x^3e^x + 12x^2e^x - 24xe^x + \int 24e^x \ dx \\ & = x^4 e^x - 4x^3e^x + 12x^2e^x - 24xe^x + 24e^x + \small \color{grey}{constant} \\ & = e^x \left(x^4 - 4x^3 + 12x^2 - 24x + 24 \right) + \small \color{grey}{constant} \end{aligned}

A + B + C + D + E = 1 + 4 + 12 + 24 + 24 = 65 \implies A+B+C+D+E = 1+4+12+24+24 = \boxed{65}

Ashish Menon
Jun 14, 2016

x 4 e x d x = x 4 e x d x [ d d x x 4 × e x d x ] d x = x 4 e x [ 4 x 3 e x ] d x = x 4 e x [ 4 x 3 e x d x [ d d x 4 x 3 × e x d x ] d x ] = x 4 e x [ 4 x 3 e x [ 12 x 2 e x ] d x ] = x 4 e x [ 4 x 3 e x [ 12 x 2 e x d x [ d d x 12 x 2 × e x d x ] d x ] ] = x 4 e x [ 4 x 3 e x [ 12 x 2 e x [ 24 x e x ] d x ] ] = x 4 e x [ 4 x 3 e x [ 12 x 2 e x [ 24 x e x [ 24 e x ] d x ] ] ] = x 4 e x [ 4 x 3 e x [ 12 x 2 e x [ 24 x e x [ 24 e x ] d x ] ] ] = x 4 e x [ 4 x 3 e x [ 12 x 2 e x [ 24 x e x 24 e x ] ] ] = x 4 e x 4 x 3 e x + 12 x 2 e x 24 x e x + 24 e x + c o n s t a n t = e x ( x 4 4 x 3 + 12 x 2 24 x + 24 ) + c o n s t a n t a + b + c + d + e = 1 + 4 + 12 + 24 + 24 = 65 \begin{aligned} \int x^4e^x \ dx & = x^4\int e^x \ dx - \int\left[\dfrac{d}{dx} x^4 × \int e^x \ dx\right] \ dx\\ \\ & = x^4e^x - \int\left[4x^3e^x\right] \ dx\\ \\ & = x^4e^x - \left[4x^3\int e^x \ dx - \int\left[\dfrac{d}{dx} 4x^3 × \int e^x \ dx\right] \ dx\right]\\ \\ & = x^4e^x - \left[4x^3e^x - \int\left[12x^2e^x\right]\ dx\right]\\ \\ & = x^4e^x - \left[4x^3e^x - \left[12x^2\int e^x \ dx - \int\left[\dfrac{d}{dx} 12x^2 × \int e^x \ dx\right] \ dx\right]\right]\\ \\ & = x^4e^x - \left[4x^3e^x - \left[12x^2e^x - \int\left[24xe^x\right] \ dx\right]\right]\\ \\ & = x^4e^x - \left[4x^3e^x - \left[12x^2e^x - \left[24xe^x - \int\left[24e^x\right] \ dx\right]\right]\right]\\ \\ & = x^4e^x - \left[4x^3e^x - \left[12x^2e^x - \left[24xe^x - \int\left[24e^x\right] \ dx\right]\right]\right]\\ \\ & = x^4e^x - \left[4x^3e^x - \left[12x^2e^x - \left[24xe^x - 24e^x\right]\right]\right]\\ \\ & = x^4e^x - 4x^3e^x + 12x^2e^x - 24xe^x + 24e^x + \small \color{grey}{constant}\\ \\ & = e^x\left(x^4 - 4x^3 + 12x^2 - 24x + 24\right) + \small \color{grey}{constant}\\ \\ \therefore a+b+c+d+e & = 1+4+12+24+24\\ & = \color{#69047E}{\boxed{65}} \end{aligned}

You will not believe but I solved this mentally =D. Nice question though

Abhay Tiwari - 5 years ago

Log in to reply

You have advanced integration skill, hats off !!!

Ayush Maurya - 4 years, 12 months ago
Oli Hohman
Jun 17, 2016

This method works when you have a product of an exponential and a polynomial because integrating exponentials is typically easy as well as differentiating polynomials. As you can see, we differentiate the polynomial until it's a constant term, and then sum the products of the down-right diagonals (as you can see in the picture). You can even generalize this for the integral of x^n*e^x dx fairly easily, where n is in the positive integers.

Refb Pe
Jun 16, 2016

By using Tabular.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...