It's Golden!

Geometry Level 3

In quadrilateral A B C D , F K C D ABCD, FKCD and G H J E GHJE are squares with side length 1 1 as shown above.

If max ( y ) = α + β ( ϕ α ) λ β ϕ \max(y) = \alpha + \dfrac{\beta(\phi - \alpha)^{\frac{\lambda}{\beta}}}{\phi} , where α \alpha , β \beta and λ \lambda are coprime positive integers and ϕ \phi is the golden ratio, find α + β + λ \alpha + \beta + \lambda .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 31, 2021

Let A A be the origin ( 0 , 0 ) (0,0) of the x y xy -plane with A D AD and A B AB be along the x x -axis and y y -axis respectively., and A G H = θ \angle AGH = \theta . Then J = ( sin θ , sin θ + cos θ ) J=(\sin \theta, \sin \theta + \cos \theta) and C = ( sin θ + cos θ + 1 , 1 ) C = (\sin \theta + \cos \theta + 1, 1) . The equation of the line B C BC is given by:

y 1 x sin θ cos θ 1 = sin θ + cos θ 1 sin θ sin θ cos θ 1 Putting x = 0 y = 1 + 2 sin θ cos θ cos θ + 1 Let t = tan θ 2 = 1 + 2 2 t 1 + t 2 1 t 2 1 + t 2 1 t 2 1 + t 2 + 1 = 1 + 2 t ( 1 t 2 ) 1 + t 2 To find max ( y ) d y d t = 2 ( t 4 + 4 t 2 1 ) ( 1 + t 2 ) 2 Putting d y d t = 0 t 4 + 4 t 2 = 1 ( t 2 + 2 ) 2 = 5 Since θ < 9 0 t = 5 2 Golden ratio φ = 1 + 5 2 = 2 φ 3 = 1 φ φ = φ 1 φ 5 = 2 φ 1 max ( y ) = 1 + 2 t ( 1 t 2 ) 1 + t 2 = 1 + 2 φ 1 φ φ 2 φ + 1 φ 2 + φ 1 = 1 + 2 φ 1 φ 2 2 φ = 1 + 2 ( φ 1 ) 3 2 φ \begin{aligned} \frac {y-1}{x-\sin \theta - \cos \theta -1} & = \frac {\sin \theta + \cos \theta -1}{\sin \theta -\sin \theta - \cos \theta -1} & \small \blue{\text{Putting }x=0} \\ \implies y & = 1 + \frac {2\sin \theta \cos \theta}{\cos \theta +1} & \small \blue{\text{Let }t = \tan \frac \theta 2} \\ & = 1 + \frac {2 \cdot \frac {2t}{1+t^2}\cdot \frac {1-t^2}{1+t^2}}{\frac {1-t^2}{1+t^2}+1} \\ & = 1 + \frac {2t(1-t^2)}{1+t^2} & \small \blue{\text{To find }\max(y)} \\ \frac {dy}{dt} & = \frac {2(t^4+4t^2-1)}{(1+t^2)^2} & \small \blue{\text{Putting }\frac {dy}{dt} =0} \\ t^4 + 4t^2 & = 1 \\ (t^2+2)^2 & = 5 & \small \blue{\text{Since }\theta < 90^\circ} \\ \implies t & = \sqrt{\sqrt 5 -2} & \small \blue{\text{Golden ratio }\varphi = \frac {1+\sqrt 5}2} \\ & = \sqrt{2\varphi - 3} = \frac 1{\varphi\sqrt \varphi} = \frac {\sqrt{\varphi-1}}\varphi & \small \blue{\implies \sqrt 5 = 2\varphi -1} \\ \implies \max (y) & = 1 + \frac {2t(1-t^2)}{1+t^2} \\ & = 1 + \frac {2\sqrt{\varphi-1}}\varphi \cdot \frac {\varphi^2- \varphi + 1}{\varphi^2 + \varphi - 1} \\ & = 1 + \frac {2\sqrt{\varphi-1}}\varphi \cdot \frac 2{2 \varphi} \\ & = 1 + \frac {2(\varphi-1)^\frac 32}\varphi \end{aligned}

The required answer α + β + γ = 1 + 2 + 3 = 6 \alpha + \beta + \gamma = 1 + 2 + 3 = \boxed 6 .

Rocco Dalto
May 30, 2021

Using the above diagram I K = ( m + n ) sin ( θ ) = sin ( θ ) \overline{IK} = (m + n)\sin(\theta) = \sin(\theta) and J I = sin ( θ ) + cos ( θ ) 1 \overline{JI} = \sin(\theta) + \cos(\theta) - 1

and J I C B P C sin ( θ ) + cos ( θ ) + 1 y 1 = sin ( θ ) + 1 sin ( θ ) + cos ( θ ) 1 \triangle{JIC} \sim \triangle{BPC} \implies \dfrac{\sin(\theta) + \cos(\theta) + 1}{y - 1} = \dfrac{\sin(\theta) + 1}{\sin(\theta) + \cos(\theta) - 1}

y = 1 + sin ( 2 θ ) sin ( θ ) + 1 \implies y = 1 + \dfrac{\sin(2\theta)}{\sin(\theta) + 1} \implies

d y d x = ( 2 cos ( 2 θ ) ) ( sin ( θ ) + 1 ) sin ( 2 θ ) cos ( θ ) ( sin ( θ ) + 1 ) 2 = 0 \dfrac{dy}{dx} = \dfrac{(2\cos(2\theta))(\sin(\theta) + 1) - \sin(2\theta)\cos(\theta)}{(\sin(\theta) + 1)^2} = 0 \implies

( 2 cos 2 ( θ ) 1 ) ( sin ( θ ) + 1 ) = sin ( θ ) cos 2 ( θ ) sin 3 ( θ ) + 2 sin 2 ( θ ) 1 = 0 (2\cos^2(\theta) - 1)(\sin(\theta) + 1) = \sin(\theta)\cos^2(\theta) \implies \sin^3(\theta) + 2\sin^2(\theta) - 1 = 0

Let u = sin ( θ ) u 3 + 2 u 2 1 = 0 ( u + 1 ) ( u 2 + u 1 ) = 0 u = \sin(\theta) \implies u^3 + 2u^2 - 1 = 0 \implies (u + 1)(u^2 + u - 1) = 0 and

u 1 u = 5 1 2 = ϕ 1 = sin ( θ ) u \neq -1 \implies u = \dfrac{\sqrt{5} - 1}{2} = \phi - 1 = \sin(\theta) \:\ dropping the negative root

cos ( θ ) = ϕ 1 y ( m a x ) = 1 + 2 sin ( θ ) cos ( θ ) sin ( θ ) + 1 = \implies \cos(\theta) = \sqrt{\phi - 1} \implies y(max) = 1 + \dfrac{2\sin(\theta)\cos(\theta)}{\sin(\theta) + 1} =

1 + 2 ( ϕ 1 ) 3 2 ϕ = α + β ( ϕ α ) λ β ϕ 1 + \dfrac{2(\phi - 1)^{\frac{3}{2}}}{\phi} = \alpha + \dfrac{\beta(\phi - \alpha)^{\frac{\lambda}{\beta}}}{\phi} α + β + λ = 6 \implies \alpha + \beta + \lambda = \boxed{6} .

You can check that a max does occur at θ = arcsin ( ϕ 1 ) \theta = \arcsin(\phi - 1) .

I checked and d 2 y d θ 2 θ = arcsin ( ϕ 1 ) < 0 \dfrac{d^2y}{d\theta^2}|_{\theta = \arcsin(\phi - 1)} < 0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...