Balancing An ABC Expression

Algebra Level 4

a a + b c + b b + a c + c c + a b \large \dfrac{a}{\sqrt{a+bc}}+\dfrac{b}{\sqrt{b+ac}}+\dfrac{c}{\sqrt{c+ab}}

Let a , b a,b and c c be positive reals satisfying a + b + c = 1 a+b+c=1 . Find the maximum value of the expression above.


Source: My school selection MO for grade 10.


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Feb 22, 2016

The Cauchy-Schwarz inequality applied to the two vectors ( a , b , c ) (\sqrt{a},\sqrt{b},\sqrt{c}) and b c , a c , a b ) \sqrt{bc}, \sqrt{ac},\sqrt{ab}) gives 9 a b c ( a + b + c ) ( b c + a c + a b ) = a b + a c + b c . 9abc \; \le \; (a + b + c)(bc + ac + ab) \; = \; ab + ac + bc \;. The Cauchy-Schwarz inequality applied to the vectors ( a , b , c ) (\sqrt{a},\sqrt{b},\sqrt{c}) and ( a a + b c , b b + a c , c c + a b ) \left(\sqrt{\frac{a}{a+bc}},\sqrt{\tfrac{b}{b+ac}},\sqrt{\tfrac{c}{c+ab}}\right) gives ( a a + b c + b b + a c + c c + a b ) 2 ( a + b + c ) ( a a + b c + b b + a c + c c + a b ) = a ( 1 b ) ( 1 c ) + b ( 1 a ) ( 1 c ) + c ( 1 a ) ( 1 b ) = a ( 1 a ) + b ( 1 b ) + c ( 1 c ) ( 1 a ) ( 1 b ) ( 1 c ) = ( a + b + c ) ( a + b + c ) 2 + 2 ( a b + a c + b c ) ( b + c ) ( a + c ) ( a + b ) = 2 ( a b + a c + b c ) ( b + c ) ( a + c ) ( a + b ) \begin{array}{rcl} \displaystyle\left(\frac{a}{\sqrt{a+bc}} + \frac{b}{\sqrt{b + ac}} + \frac{c}{\sqrt{c + ab}}\right)^2 & \le & \displaystyle(a + b + c)\left(\frac{a}{a+bc} + \frac{b}{b+ac} + \frac{c}{c + ab}\right) \\ & = & \displaystyle\frac{a}{(1-b)(1-c)} + \frac{b}{(1-a)(1-c)} + \frac{c}{(1-a)(1-b)} \\ & = & \displaystyle \frac{a(1-a) + b(1-b) + c(1-c)}{(1-a)(1-b)(1-c)} \\ & = & \displaystyle\frac{(a+b+c) - (a+b+c)^2 + 2(ab + ac + bc)}{(b+c)(a+c)(a+b)} \\ & = &\displaystyle \frac{2(ab + ac + bc)}{(b+c)(a+c)(a+b)} \end{array} and so, since ( b + c ) ( a + c ) ( a + b ) = ( a + b + c ) ( a b + a c + b c ) a b c = a b + a c + b c a b c (b+c)(a+c)(a+b) \; = \; (a + b + c)(ab + ac + bc) - abc \; = \; ab + ac + bc - abc we deduce that ( a a + b c + b b + a c + c c + a b ) 2 2 ( a b + a c + b c ) a b + a c + b c a b c 2 ( a b + a c + b c ) ( a b + a c + b c ) 1 9 ( a b + a c + b c ) = 9 4 . \begin{array}{rcl} \displaystyle\left(\frac{a}{\sqrt{a+bc}} + \frac{b}{\sqrt{b + ac}} + \frac{c}{\sqrt{c + ab}}\right)^2 & \le &\displaystyle \frac{2(ab + ac + bc)}{ab + ac + bc - abc} \\ & \le &\displaystyle \frac{2(ab + ac + bc)}{(ab + ac + bc) - \frac19(ab + ac + bc)} \; = \; \tfrac94 \;. \end{array} Since the two Cauchy-Schwarz inequalities become equalities when a = b = c a=b=c , we deduce that a a + b c + b b + a c + c c + a b 3 2 \frac{a}{\sqrt{a+bc}} + \frac{b}{\sqrt{b + ac}} + \frac{c}{\sqrt{c + ab}} \; \le \; \boxed{\frac32} with equality when a = b = c = 1 3 a=b=c=\tfrac13 .

I did it using jenesens inequality and then trivial am.gm

Samarth Agarwal - 5 years, 3 months ago

Log in to reply

Post a solution, then, please. If you used the concave function f ( x ) = x 1 x f(x) = x\sqrt{1-x} , for example, the AM/GM inequality goes "the wrong way".

Mark Hennings - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...