It's just simple log, isn't it?

Algebra Level 3

log 2 ( x + 4 ) = log 4 x + 16 8 \large\log_{2}(x+4)=\log_{4x+16}8

If a a and b b are two real solutions to the equation above, then what is a × b a\times b ?

15 15 31 2 \frac{31}{2} There are more than two real solutions 31 4 \frac{31}{4} 31 2 -\frac{31}{2} 15 -15

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 29, 2017

log 2 ( x + 4 ) = log 4 x + 16 8 = log 2 8 log 2 ( 4 ( x + 4 ) ) = 3 log 2 4 + log 2 ( x + 4 ) log 2 ( x + 4 ) = 3 2 + log 2 ( x + 4 ) Let y = log 2 ( x + 4 ) y = 3 2 + y y 2 + 2 y 3 = 0 ( y + 3 ) ( y 1 ) = 0 y = log 2 ( x + 4 ) = { 3 1 \begin{aligned} \log_2(x+4) & = \log_{4x+16}8 \\ & = \frac {\log_2 8}{\log_2 (4(x+4))} \\ & = \frac 3{\log_2 4 + \log_2 (x+4)} \\ \implies \log_2(x+4) & = \frac 3{2 + \log_2 (x+4)} & \small \color{#3D99F6} \text{Let }y = \log_2 (x+4) \\ y & = \frac 3{2+y} \\ y^2 + 2y - 3 & = 0 \\ (y+3)(y-1) & = 0 \\ \implies y & = \log_2 (x+4) = \begin{cases} -3 \\ 1 \end{cases} \end{aligned}

log 2 ( x + 4 ) = { 3 x + 4 = 1 8 x = 31 8 1 x + 4 = 2 x = 2 \implies \log_2(x+4) = \begin{cases} -3 & \implies x + 4 = \dfrac 18 & \implies x = -\dfrac {31}8 \\ 1 & \implies x + 4 = 2 & \implies x = - 2 \end{cases}

a b = ( 31 8 ) ( 2 ) = 31 4 \implies ab = \left(-\dfrac {31}8 \right) (-2) = \boxed{\dfrac {31}4}

Uros Stojkovic
Jun 29, 2017

log 4 x + 16 8 \log_{4x+16}8 can be written in the form of log 2 8 log 2 ( 4 x + 16 ) = 3 log 2 4 ( x + 4 ) = 3 log 2 4 + log 2 ( x + 4 ) \frac{\log_{2}8}{\log_{2}(4x+16)}=\frac{3}{\log_{2}4(x+4)}=\frac{3}{\log_{2}4+\log_{2}(x+4)} .

Now, the equation becomes:

log 2 ( x + 4 ) = 3 2 + log 2 ( x + 4 ) \log_{2}(x+4)=\frac{3}{2+\log_{2}(x+4)}

log 2 2 ( x + 4 ) + 2 log 2 ( x + 4 ) 3 = 0 \log_{2}^{2}(x+4)+2\log_{2}(x+4)-3=0 .

Setting t = log 2 ( x + 4 ) t=\log_{2}(x+4) , we get simple quadratic equation: t 2 + 2 t 3 = 0 t^{2}+2t-3=0

Solving for t t , we get:

t 1 = 3 , t 2 = 1 t_{1}=-3 , t_{2}=1 .

Now, going back to solve for x x :

log 2 ( a + 4 ) = 3 \log_{2}(a+4)=-3

log 2 ( b + 4 ) = 1 \log_{2}(b+4)=1 , where a a and b b are two different real solution of the equation.

Solving for a a :

log 2 ( a + 4 ) = log 2 2 3 \log_{2}(a+4)=\log_{2}2^{-3}

a + 4 = 1 8 a+4=\frac{1}{8}

a = 31 8 a=-\frac{31}{8}

and then for b b :

log 2 ( b + 4 ) = log 2 2 \log_{2}(b+4)=\log_{2}2

b + 4 = 2 b+4=2

b = 2 b=-2 .

Hence, a × b = 31 8 × ( 2 ) = 31 4 . a\times b=-\frac{31}{8}\times (-2)=\boxed{\frac{31}{4}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...