lo g 2 ( x + 4 ) = lo g 4 x + 1 6 8
If a and b are two real solutions to the equation above, then what is a × b ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
lo g 4 x + 1 6 8 can be written in the form of lo g 2 ( 4 x + 1 6 ) lo g 2 8 = lo g 2 4 ( x + 4 ) 3 = lo g 2 4 + lo g 2 ( x + 4 ) 3 .
Now, the equation becomes:
lo g 2 ( x + 4 ) = 2 + lo g 2 ( x + 4 ) 3
lo g 2 2 ( x + 4 ) + 2 lo g 2 ( x + 4 ) − 3 = 0 .
Setting t = lo g 2 ( x + 4 ) , we get simple quadratic equation: t 2 + 2 t − 3 = 0
Solving for t , we get:
t 1 = − 3 , t 2 = 1 .
Now, going back to solve for x :
lo g 2 ( a + 4 ) = − 3
lo g 2 ( b + 4 ) = 1 , where a and b are two different real solution of the equation.
Solving for a :
lo g 2 ( a + 4 ) = lo g 2 2 − 3
a + 4 = 8 1
a = − 8 3 1
and then for b :
lo g 2 ( b + 4 ) = lo g 2 2
b + 4 = 2
b = − 2 .
Hence, a × b = − 8 3 1 × ( − 2 ) = 4 3 1 .
Problem Loading...
Note Loading...
Set Loading...
lo g 2 ( x + 4 ) ⟹ lo g 2 ( x + 4 ) y y 2 + 2 y − 3 ( y + 3 ) ( y − 1 ) ⟹ y = lo g 4 x + 1 6 8 = lo g 2 ( 4 ( x + 4 ) ) lo g 2 8 = lo g 2 4 + lo g 2 ( x + 4 ) 3 = 2 + lo g 2 ( x + 4 ) 3 = 2 + y 3 = 0 = 0 = lo g 2 ( x + 4 ) = { − 3 1 Let y = lo g 2 ( x + 4 )
⟹ lo g 2 ( x + 4 ) = ⎩ ⎨ ⎧ − 3 1 ⟹ x + 4 = 8 1 ⟹ x + 4 = 2 ⟹ x = − 8 3 1 ⟹ x = − 2
⟹ a b = ( − 8 3 1 ) ( − 2 ) = 4 3 1