It's kinda weird summation - 2

Calculus Level 5

S = n = 0 ( 1 ) n ( 2 n + 1 ) ! 4 2 n + 3 n ! ( n + 2 ) ! \large \mathcal{S} = \sum_{n=0}^{\infty} \dfrac{(-1)^n (2n+1)!}{4^{2n+3}n!(n+2)!}

Given that S S is equal to A B C D \dfrac{A - B\sqrt C}{D} where A , B , C A,B,C and D D are positive integers, with A A and B B coprime, C C square-free, find the value of A + B + C + D A+B+C+D .


The answer is 26.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Consider the binomial series expansion of 1 + x \sqrt{1+x} as follows:

1 + x = 1 + x 2 x 2 2 2 2 ! + 1 3 x 3 2 3 3 ! 1 3 5 x 4 2 4 4 ! + = 1 + x 2 n = 0 ( 1 ) n ( 2 n + 1 ) ! ! x n + 2 2 n + 2 ( n + 2 ) ! Note that ( 2 n + 1 ) ! ! = ( 2 n + 1 ) ! 2 n n ! = 1 + x 2 n = 0 ( 1 ) n ( 2 n + 1 ) ! x n + 2 4 n + 1 n ! ( n + 2 ) ! Putting x = 1 4 1 + 1 4 = 1 + 1 8 n = 0 ( 1 ) n ( 2 n + 1 ) 4 2 n + 3 n ! ( n + 2 ) ! 5 2 = 1 + 1 8 S S = 1 + 1 8 5 2 = 9 4 5 8 \begin{aligned} \sqrt{1+x} & = 1 + \frac x2 - \frac {x^2} {2^2\cdot 2!} + \frac {1\cdot 3x^3}{2^3\cdot 3!} - \frac {1\cdot 3\cdot 5 x^4}{2^4\cdot 4!} + \cdots \\ & = 1 + \frac x2 - \sum_{n=0}^\infty \frac {(-1)^n{\color{#3D99F6}(2n+1)!!}x^{n+2}}{2^{n+2}(n+2)!} & \small \color{#3D99F6} \text{Note that }(2n+1)!! = \frac {(2n+1)!}{2^n n!} \\ & = 1 + \frac x2 - \sum_{n=0}^\infty \frac {(-1)^n(2n+1)!x^{n+2}}{4^{n+1}n!(n+2)!} & \small \color{#3D99F6} \text{Putting }x = \frac 14 \\ \sqrt{1+\frac 14} & = 1 + \frac 18 - \color{#3D99F6} \sum_{n=0}^\infty \frac {(-1)^n(2n+1)}{4^{2n+3}n!(n+2)!} \\ \frac {\sqrt 5}2 & = 1 + \frac 18 - \color{#3D99F6} S \\ \implies S & = 1 + \frac 18 - \frac {\sqrt 5}2 = \frac {9-4\sqrt 5}8 \end{aligned}

Therefore, A + B + C + D = 9 + 4 + 5 + 8 = 26 A+B+C+D = 9+4+5+8 = \boxed{26} .

Help sir,I am rupayan from India...after watching your solution I had a little doubt...that how you imagine of the first √(1+x)...is there any method?? please guide me and oblige.

Rupayan Jana - 1 year, 8 months ago

Log in to reply

Learn up binomial expansion.

Chew-Seong Cheong - 1 year, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...