It's Mathematics Olympiad! - 1

Algebra Level 3

A function f f is defined over the set of all positive integers and satisfies : f ( 1 ) = 1996 f(1)=1996 n > 1 k = 1 n f ( k ) = n 2 f ( n ) \forall n>1\space\sum_{k=1}^nf(k)=n^2f(n) Calculate the value of f ( 1996 ) f(1996) , if it is a b , gcd ( a , b ) = 1 \dfrac{a}{b},\gcd(a,b)=1 then submit a + b a+b


S o u r c e : Source : B r i t i s h M a t h e m a t i c s O l y m p i a d R o u n d 1 1996 P r o b l e m 2 British\space Mathematics\space Olympiad\space Round\space 1\space 1996\space Problem \space 2


The answer is 1999.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pop Wong
Mar 23, 2021

f ( 1 ) = 1 2 f ( 1 ) f ( 1 ) + f ( 2 ) = 2 2 f ( 2 ) f ( 2 ) = 1 3 f ( 1 ) f ( 1 ) + f ( 2 ) + f ( 3 ) = 3 2 f ( 3 ) f ( 3 ) = 4 8 f ( 2 ) = 4 8 1 3 f ( 1 ) f ( 1 ) + f ( 2 ) + f ( 3 ) + f ( 4 ) = 4 2 f ( 4 ) f ( 4 ) = 9 15 f ( 3 ) = 9 15 4 8 1 3 f ( 1 ) k = 1 n f ( k ) k = 1 n 1 f ( k ) = n 2 f ( n ) ( n 1 ) 2 f ( n 1 ) f ( n ) = n 2 f ( n ) ( n 1 ) 2 f ( n 1 ) f ( n ) = ( n 1 ) 2 n 2 1 f ( n 1 ) = ( n 1 ) n + 1 f ( n 1 ) \begin{aligned} f(1) &= 1^2 f(1) \\ f(1)+f(2) &= 2^2 f(2) \implies f(2) = \cfrac{1}{3}f(1)\\ f(1)+f(2)+f(3) &= 3^2 f(3) \implies f(3) = \cfrac{4}{8}f(2) = \cfrac{4}{8}\cfrac{1}{3} f(1) \\ f(1)+f(2)+f(3)+f(4) &= 4^2 f(4) \implies f(4) = \cfrac{9}{15}f(3) = \cfrac{9}{15}\cfrac{4}{8}\cfrac{1}{3} f(1)\\ \sum\limits_{k=1}^{n} f(k) - \sum\limits_{k=1}^{n-1} f(k) &= n^2 f(n) - (n-1)^2 f(n-1) \\ \implies f(n) &= n^2 f(n) - (n-1)^2 f(n-1) \\ \implies f(n) &= \cfrac{(n-1)^2}{n^2-1} f(n-1) = \cfrac{(n-1)}{n+1} f(n-1) \\ \end{aligned}

So, we have, for n 2 n\geq 2

f ( n ) = k = 2 n n 1 n + 1 f ( 1 ) = 2 f ( 1 ) ( n + 1 ) n f(n) = \prod\limits_{k=2}^{n} \cfrac{n-1}{n+1} f(1) = \cfrac{2 f(1)}{(n+1) n}

f ( 1996 ) = 1995 1997 1994 1996 1993 1995 . . . 2 4 1 3 f ( 1 ) = 2 × 1996 1997 × 1996 = 2 1997 \therefore f(1996) = \cfrac{\cancel{1995}}{1997} \cfrac{\cancel{1994}}{1996} \cfrac{\cancel{1993}}{\cancel{1995}} ...\cfrac{2}{\cancel{4}}\cfrac{1}{\cancel{3}} f(1) = \cfrac{2 \times 1996}{1997\times1996} = \cfrac{2}{1997}

Hence, a + b = 2 + 1997 = 1999 a+b = 2+1997 = \boxed{1999}

Zakir Husain
Mar 23, 2021

Observation :

n n f ( n ) f(n) k = 1 n f ( k ) \sum_{k=1}^n f(k)
1 1 1996 1 \dfrac{1996}{1} 1996 × 1 1 \dfrac{1996\times 1}{1}
2 2 1996 3 \dfrac{1996}{3} 1996 × 4 3 \dfrac{1996\times 4}{3}
3 3 1996 6 \dfrac{1996}{6} 1996 × 6 4 \dfrac{1996\times 6}{4}
4 4 1996 10 \dfrac{1996}{10} 1996 × 8 5 \dfrac{1996\times 8}{5}
5 5 1996 15 \dfrac{1996}{15} 1996 × 10 6 \dfrac{1996\times 10}{6}
6 6 1996 21 \dfrac{1996}{21} 1996 × 12 7 \dfrac{1996\times 12}{7}

C o n j e c t u r e : f ( n ) = 1996 n 2 ( n + 1 ) = 1996 × 2 n ( n + 1 ) \boxed{Conjecture : f(n)=\dfrac{1996}{\frac{n}{2}(n+1)}=\dfrac{1996\times 2}{n(n+1)}} P r o o f : Proof : f ( 1 ) = 1996 × 2 1 × ( 1 + 1 ) = 1996.......... [ 1 ] f(1)=\dfrac{1996\times \cancel{2}}{1\times \cancel{(1+1)}}=1996..........[1] k = 1 n f ( k ) = k = 1 n 1996 × 2 k ( k + 1 ) \sum_{k=1}^nf(k)=\sum_{k=1}^n\dfrac{1996\times 2}{k(k+1)} 1996 × 2 k = 1 n ( k + 1 ) k k ( k + 1 ) 1996\times 2\sum_{k=1}^n\dfrac{(k+1)-k}{k(k+1)} 1996 × 2 k = 1 n k + 1 k ( k + 1 ) 1996 × 2 k = 1 n k k ( k + 1 ) 1996\times 2\sum_{k=1}^n\dfrac{\cancel{k+1}}{k\cancel{(k+1)}}-1996\times 2\sum_{k=1}^n\dfrac{\cancel{k}}{\cancel{k}(k+1)} = 1996 × 2 k = 1 n 1 k 1996 × 2 k = 1 n 1 k + 1 =1996\times 2\sum_{k=1}^n\dfrac{1}{k}-1996\times 2\sum_{k=1}^n\dfrac{1}{k+1} = 1996 × 2 k = 1 n 1 k 1996 × 2 k = 2 n + 1 1 k =1996\times 2\sum_{k=1}^n\dfrac{1}{k}-1996\times 2\sum_{k=2}^{n+1}\dfrac{1}{k} = 1996 × 2 ( 1 1 n + 1 k = 2 n 1 k k = 2 n 1 k ) =1996\times 2(1-\dfrac{1}{n+1}\cancel{\sum_{k=2}^n\dfrac{1}{k}-\sum_{k=2}^{n}\dfrac{1}{k}}) = 1996 × 2 n n + 1 =1996\times \dfrac{2n}{n+1} = 1996 × 2 n × n ( n + 1 ) × n =1996\times \dfrac{2n\red{\times n}}{(n+1)\red{\times n}} = 1996 × 2 n 2 ( n + 1 ) n =1996\times \dfrac{2n^2}{(n+1)n} = n 2 × 1996 × 2 n ( n + 1 ) =n^2\times\red{\dfrac{1996\times 2}{n(n+1)}} = n 2 f ( n ) =n^2f(n) Q . E . D . Q.E.D. f ( 1996 ) = 1996 × 2 1996 × ( 1996 + 1 ) = 2 1997 f(1996)=\dfrac{\cancel{1996}\times 2}{\cancel{1996}\times(1996+1)}=\dfrac{2}{1997} gcd ( 2 , 1997 ) = 1 \because \gcd(2,1997)=1 A n s w e r = 1997 + 2 = 1999 \therefore \boxed{Answer=1997+2=1999}

n is strictly greater than 1, please remove the 1st row from your observation table to make it precise.

Akash Mandal - 1 month, 1 week ago

Log in to reply

The question says that n > 1 f ( n ) = n 2 f ( n ) \forall n>1 f(n)=n^2f(n) It doesn't say that n = 1 f ( n ) = n 2 f ( n ) n=1\Rightarrow f(n)\cancel{=}n^2f(n)

Zakir Husain - 1 month, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...