It's Mathematics Olympiad! - 3

Algebra Level 3

For what values of the variable x x does the inequality hold : 4 x 2 ( 1 1 + 2 x ) 2 2 x + 9 \dfrac{4x^2}{(1-\sqrt{1+2x})^2}\leq 2x+9 If a a and b b are minimum and maximum possible values of x x , submit a + b a+b .


S o u r c e : Source: I n t e r n a t i o n a l M a t h e m a t i c s O l y m p i a d 1960 P r o b l e m 2 International\space Mathematics\space Olympiad\space 1960\space Problem\space 2 (Not the real version of the question)


The answer is 5.125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Nikola Alfredi
Mar 24, 2021

To solve this easily, rationalize LHS.

4 x 2 ( 1 2 x + 1 ) 2 ( 1 + 2 x + 1 ) 2 ( 1 + 2 x + 1 ) 2 2 x + 9 ( 1 + 2 x + 1 ) 2 2 x + 9 \displaystyle \frac {4x^2}{(1-\sqrt {2x+1} )^2} \cdot \frac {(1+\sqrt {2x+1} )^2}{(1+\sqrt {2x+1} )^2} \le 2x+9 \implies (1+\sqrt {2x+1} )^2 \le 2x+9

Hence,

0 2 x + 1 7 2 x [ 1 2 , 45 8 ] \displaystyle 0 \le \sqrt {2x+1} \le \frac {7}{2} \implies x \in \Big [ - \frac {1}{2} , \frac {45}{8} \Big ]

Sathvik Acharya
Mar 24, 2021

Since 1 + 2 x 0 \sqrt{1+2x}\ge 0 , the minimum value of x x is 1 2 -\dfrac{1}{2} .

In order to eliminate the square root in the denominator, let x = a 2 1 2 x=\dfrac{a^2-1}{2} and x 1 2 a 0 x\ge -\dfrac{1}{2}\implies a\ge 0 .

So, we have, 4 ( a 2 1 2 ) 2 ( 1 1 + 2 ( a 2 1 2 ) ) 2 2 ( a 2 1 2 ) + 9 ( a 2 1 ) 2 ( 1 a ) 2 a 2 + 8 ( a + 1 ) 2 a 2 + 8 a 2 + 2 a + 1 a 2 + 8 a 7 2 x ( 7 2 ) 2 1 2 = 45 8 \begin{aligned} \frac{4\left(\dfrac{a^2-1}{2}\right)^2}{\left(1-\sqrt{1+2\left(\dfrac{a^2-1}{2}\right)}\right)^2}&\le 2\left(\dfrac{a^2-1}{2}\right)+9 \\ \frac{(a^2-1)^2}{(1-a)^2}&\le a^2+8 \\ (a+1)^2&\le a^2+8 \\ a^2+2a+1&\le a^2+8 \\ a&\le \frac{7}{2} \\ \therefore \; x & \le \dfrac{\left(\dfrac{7}{2}\right)^2-1}{2}=\dfrac{45}{8} \end{aligned} Therefore, a = 1 2 , b = 45 8 a + b = 41 8 a=-\dfrac{1}{2},\; b=\dfrac{45}{8}\implies a+b=\boxed{\dfrac{41}{8}}

Vichama Pre
Apr 2, 2021

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...