It's Mehul's birthday

Algebra Level 4

x + y + z = 4 x 2 + y 2 + z 2 = 40.125 e x y z = 4.771 \begin{aligned} \sqrt{x}+\sqrt{y}+\sqrt{z}&=4 \\ x^2 +y^2 +z^2&=40.125 \\ e^{xyz}&=4.771\end{aligned}

Find x + y + z x+y+z


This problem is dedicated to Mehul Arora on his birthday. This problem is not an original.


The answer is 7.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Shaun Leong
Mar 7, 2016

Let a = x a=\sqrt x , b = y b=\sqrt y and c = z c=\sqrt z . Hence a b c = ln 4.771 = 1.25 abc=\sqrt {\ln{4.771}} = 1.25

a 2 + b 2 + c 2 2 ( a b + b c + c a ) = 4 2 ( 1 ) a^2+b^2+c^2-2(ab+bc+ca)=4^2 ---- (1) ( a 2 + b 2 + c 2 ) 2 2 ( a 2 b 2 + b 2 c 2 + c 2 + a 2 ) = a 4 + b 4 + c 4 = 40.125 ( 2 ) (a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2+a^2)=a^4+b^4+c^4=40.125 ---- (2)

Let a b + b c + c a = k ab+bc+ca=k . Note that a 2 b 2 + b 2 c 2 + c 2 a 2 = ( a b + b c + c a ) 2 2 a b c ( a + b + c ) = k 2 10 a^2b^2+b^2c^2+c^2a^2=(ab+bc+ca)^2-2abc (a+b+c)=k^2-10 Thus from equation (1) and (2), ( 16 k ) 2 2 ( k 2 10 ) = 40.125 (16-k)^2-2(k^2-10)=40.125 2 k 2 + 64 k + 235.875 = 0 \Rightarrow 2k^2+64k+235.875=0 k = 64 ± 47 4 k=\dfrac {-64\pm 47}{4}

Since 16 k = a 2 + b 2 + c 2 > 0 16-k=a^2+b^2+c^2>0 , we have x + y + z = a 2 + b 2 + c 2 = 16 k = 7.5 x+y+z=a^2+b^2+c^2=16-k=\boxed{7.5}

@Mehul Arora Happy birthday

Department 8 - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...