It's My Birth Date

1 2 8 1990 \Large 12^{{8}^{1990}}

What are the last two digits of the number above?


The answer is 36.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 29, 2019

Let N = 1 2 8 1990 N=12^{8^{1990}} . We need to find N m o d 100 N \bmod 100 . Using Chinese remainder theorem (CRT) and considering 4 and 25, the factors of 100, separately,

Factor 4: N 1 2 8 1990 0 (mod 4) N \equiv 12^{8^{1990}} \equiv 0 \text{ (mod 4)} .

Factor 25: Since gcd ( 12 , 25 ) = 1 \gcd (12, 25) = 1 , we can apply the Euler's theorem and Euler totient function ϕ ( 25 ) = 25 × 4 5 = 20 \phi (25) = 25 \times \dfrac 45 = 20 . Then we have:

N 1 2 8 1990 m o d ϕ ( 25 ) (mod 25) 1 2 8 1990 m o d 20 (mod 25) By CRT (see note) 1 2 4 (mod 25) ( 10 + 2 ) 4 (mod 25) 10 × 2 3 + 2 4 (mod 25) 86 11 (mod 25) \begin{aligned} N & \equiv 12^{8^{1990} \bmod \phi(25)} \text{ (mod 25)} \\ & \equiv 12^{\color{#3D99F6} 8^{1990} \bmod 20} \text{ (mod 25)} & \small \color{#3D99F6} \text{By CRT (see note)} \\ & \equiv 12^{\color{#3D99F6} 4} \text{ (mod 25)} \\ & \equiv (10+2)^4 \text{ (mod 25)} \\ & \equiv 10\times 2^3+2^4 \text{ (mod 25)} \\ & \equiv 86 \equiv 11 \text{ (mod 25)} \end{aligned}

This implies that N 25 n + 11 N \equiv 25n + 11 , where n n is an integer. Then 25 n + 11 0 (mod 4) 25n+11 \equiv 0 \text{ (mod 4)} n 1 \implies n \equiv 1 and N 25 + 11 36 (mod 100) N \equiv 25+11 \equiv \boxed {36} \text{ (mod 100)} .


Note: Using CRT on 8 1990 m o d 20 8^{1990} \bmod 20

{ 8 1990 0 (mod 4) 8 1990 8 1990 m o d ϕ ( 5 ) 8 1990 m o d 4 8 2 64 4 (mod 5) \begin{cases} 8^{1990} \equiv 0 \text{ (mod 4)} \\ 8^{1990} \equiv 8^{1990 \bmod \phi(5)} \equiv 8^{1990 \bmod 4} \equiv 8^2 \equiv 64 \equiv 4 \text{ (mod 5)} \end{cases}

8 1990 5 n + 4 0 (mod 4) \implies 8^{1990} \equiv 5n + 4 \equiv 0 \text{ (mod 4)} n = 0 \implies n = 0 and 8 1990 4 (mod 20) 8^{1990} \equiv 4 \text{ (mod 20)}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...