⎩ ⎪ ⎨ ⎪ ⎧ 2 x + y + x y = 2 y + 3 z + y z = 7 2 x + 3 z + x z = 3 0
Given that x , y , and z are all integers that satisfy the system of equation above. Find the positive value of 4 x 3 + 1 0 y 3 + z 3 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Quadratic Diophantine Equations - Solve by Simon's Favorite Factoring Trick
⎩ ⎪ ⎨ ⎪ ⎧ 2 x + y + x y = 2 y + 3 z + y z = 7 2 x + 3 z + x z = 3 0 ⟹ ( x + 1 ) ( y + 2 ) = 4 ⟹ ( y + 3 ) ( z + 1 ) = 1 0 ⟹ ( x + 3 ) ( z + 2 ) = 3 6 . . . ( 1 ) . . . ( 2 ) . . . ( 3 )
From ( 1 ) : ⟹ y + 2 = x + 1 4 . From ( 3 ) : ⟹ z + 2 = x + 3 3 6 . Then, from ( 2 ) :
( y + 3 ) ( z + 1 ) ( x + 1 4 + 1 ) ( x + 3 3 6 − 1 ) ( 4 + x + 1 ) ( 3 6 − x − 3 ) ( x + 5 ) ( 3 3 − x ) − x 2 + 2 8 x + 1 6 5 1 1 x 2 + 1 2 x − 1 3 5 ( 1 1 x + 4 5 ) ( x − 3 ) ⟹ x = 1 0 = 1 0 = 1 0 ( x + 1 ) ( x + 3 ) = 1 0 ( x 2 + 4 x + 3 ) = 1 0 x 2 + 4 0 x + 3 0 = 0 = 0 = 3 x is an integer.
When x = 3 , ( 1 ) : y + 2 = x + 1 4 ⟹ y = − 1 , ( 3 ) : z + 2 = x + 3 3 6 ⟹ z = 4 .
⟹ 4 x 3 + 1 0 y 3 + z 3 = 4 2 7 − 1 0 + 6 4 = 4 8 1 = 3
Similar to my solution! Nice work!
Problem Loading...
Note Loading...
Set Loading...
⎩ ⎪ ⎨ ⎪ ⎧ 2 x + y + x y = 2 y + 3 z + y z = 7 2 x + 3 z + x z = 3 0
The first equation, 2 x + y + x y y + x y y ( x + 1 ) y = 2 = 2 − 2 x = 2 − 2 x = x + 1 2 − 2 x
The third equation, 2 x + 3 z + x z x z + 3 z z ( x + 3 ) z = 3 0 = 3 0 − 2 x = 3 0 − 2 x = x + 3 3 0 − 2 x
The second equation, y + 3 z + y z y + 3 z + y z + 3 ( y + 3 ) ( z + 1 ) ( x + 1 2 − 2 x + 3 ) ( x + 3 3 0 − 2 x + 1 ) ( x + 1 2 − 2 x + 3 x + 3 ) ( x + 3 3 0 − 2 x + x + 3 ) ( x + 1 x + 5 ) ( x + 3 3 3 − x ) 2 8 x − x 2 + 1 6 5 2 8 x − x 2 + 1 6 5 1 1 x 2 + 1 2 x − 1 3 5 ( 1 1 x + 4 5 ) ( x − 3 ) = 7 = 1 0 = 1 0 = 1 0 = 1 0 = 1 0 = 1 0 ( x 2 + 4 x + 3 ) = 1 0 x 2 + 4 0 x + 3 0 = 0 = 0
After all, we have x = 3 ; ⇒ Since x is an integer
Substituting, we have y = − 1 and z = 4 .
Now, we have 4 x 3 + 1 0 y 3 + z 3 = 4 3 3 + 1 0 ( − 1 ) 3 + 4 3 = 4 8 1 = ± 3 .
The positive value of 4 x 3 + 1 0 y 3 + z 3 is 3 .