It's not e

S = n = 1 n 1 n ! S =\sum_{n=1}^\infty \frac{n-1}{n!}

For S S as defined above, find L o g 1 2 ( 4 S ) Log_\frac 12 (4S) .


The answer is -2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

S = n = 1 n 1 n ! = n = 1 n n ! n = 1 1 n ! = d d x n = 0 x n n ! x = 1 n = 0 1 n ! + 1 = d d x e x x = 1 e + 1 = e e + 1 = 1 \begin{aligned} S & = \sum_{n=1}^\infty \frac {n-1}{n!} \\ & = \sum_{\blue{n=1}}^\infty \frac n{n!} - \sum_{\blue{n=1}}^\infty \frac 1{n!} \\ & = \frac d{dx} \sum_{\red{n=0}}^\infty \frac {x^n}{n!} \bigg|_{x=1} - \sum_{\red{n=0}}^\infty \frac 1{n!} \red{+1} \\ & = \frac d{dx} e^x \bigg|_{x=1} - e + 1 \\ & = e-e+1 \\ & = 1 \end{aligned}

Therefore log 1 2 ( 4 S ) = log 4 log 2 = 2 log 2 log 2 = 2 \log_\frac 12 (4S) = \dfrac {\log 4}{-\log 2} = -\dfrac {2\log 2}{\log 2} = \boxed {-2} .

Aruna Yumlembam
May 12, 2020

x/1!+x^2/2!+x^3/3!+...=e^x-1 then dividing both sides by x yields, x^0/1!+x/2!+...=(e^x-1)/x.Now taking derivative respect to x gives, (1-1)x^-1/1!+1x^0/2!+2x/3!+... =(1-e^x)/x^2+e^x/x.Setting x=1, S=1.So log(base 1/2)(4)=-2.

Tattwa Shiwani
Mar 7, 2020

We can break down S as follows:

S = i = 1 \sum_{ i=1 }^{∞} n 1 n ! \frac{n-1}{n!}

= i = 1 \sum_{ i=1 }^{∞} n n ! \frac{n}{n!} - i = 1 \sum_{ i=1 }^{∞} 1 n ! \frac{1}{n!}

= i = 1 \sum_{ i=1 }^{∞} 1 ( n 1 ) ! \frac{1}{(n-1)!} - i = 1 \sum_{ i=1 }^{∞} 1 n ! \frac{1}{n!}

= i = 0 \sum_{ i=0 }^{∞} 1 n ! \frac{1}{n!} - i = 1 \sum_{ i=1 }^{∞} 1 n ! \frac{1}{n!}

= 1 0 ! \frac{1}{0!} = 1

As S = 1, We have L o g 1 / 2 ( 4 × 1 ) \ Log_{1/2}{(4×1)}

= L o g 1 / 2 1 / 2 2 \ Log_{1/2} {1/2} ^{-2}

= -2

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...