It's Not Infinity

Algebra Level 4

y = log 2 x + log 4 x + log 16 x + 4 log 4 x = 5 + 9 + 13 + . . . + ( 4 y + 1 ) 1 + 3 + 5 + + ( 2 y 1 ) \large \begin{aligned} y & = \log_2 x + \log_4 x + \log_{16} x + \cdots \\ \\ 4\log_4 x & = \frac {5+9+13+...+(4y+1)}{1+3+5+\cdots+(2y-1)} \end{aligned}

Find x 2 y x^2y .


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 18, 2016

y = log 2 x + log 4 x + log 16 x + . . . = log 2 x + log 2 x log 2 4 + log 2 x log 2 16 + . . . = log 2 x + 1 2 log 2 x + 1 4 log 2 x + . . . = log 2 x ( 1 + 1 2 + 1 2 2 + 1 2 3 + . . . ) = log 2 x ( 1 1 1 2 ) = 2 log 2 x \begin{aligned} y & = \log_2 x + \log_4 x + \log_{16} x + ... \\ & = \log_2 x + \frac {\log_2 x}{\log_2 4} +\frac {\log_2 x}{\log_2 16} + ... \\ & = \log_2 x + \frac 12 \log_2 x + \frac 14 \log_2 x + ... \\ & = \log_2 x \left(1 + \frac 12 + \frac 1{2^2} + \frac 1{2^3} + ... \right) \\ & = \log_2 x \left(\frac 1{1-\frac 12} \right) \\ & = 2 \log_2 x \end{aligned}

Now, we have:

4 log 4 x = k = 1 y ( 4 k + 1 ) k = 1 y ( 2 k 1 ) 4 log 2 x log 2 4 = 4 y ( y + 1 ) 2 + y 2 y ( y + 1 ) 2 y 2 log 2 x = 2 y 2 + 3 y y 2 y = 2 y + 3 y y 2 = 2 y + 3 \begin{aligned} 4\log_4 x & = \frac {\sum_{k=1}^y (4k+1)}{\sum_{k=1}^y (2k-1)} \\ 4 \cdot \frac {\log_2 x}{\log_2 4} & = \frac {4\cdot \frac {y(y+1)}2 +y}{2\cdot \frac {y(y+1)}2 -y} \\ 2 \log_2 x & = \frac {2y^2+3y}{y^2} \\ y & = \frac {2y+3}y \\ y^2 & = 2y+3 \end{aligned}

y 2 2 y 3 = 0 ( y + 1 ) ( y 3 ) = 0 y = 3 y = 1 < 0 is not acceptable. \begin{aligned} \implies y^2 - 2y -3 & = 0 \\ (y+1)(y-3) & = 0 \\ \implies y & = 3 & \small \color{#3D99F6}{y = -1 < 0 \text{ is not acceptable.}} \end{aligned}

2 log 2 x = y = 3 x = 2 3 2 x 2 y = ( 2 3 2 ) 2 3 = 2 3 3 = 24 \begin{aligned} \implies 2 \log_2 x & = y = 3 \\ x & = 2^\frac 32 \\ \implies x^2y & = \left(2^\frac 32\right)^2 \cdot 3 = 2^3 \cdot 3 = \boxed{24} \end{aligned}

Why is y = 1 y=-1 not acceptable?

James Wilson - 5 months, 1 week ago

Log in to reply

From 5 + 9 + 13 + + ( 4 y + 1 ) 5+9+13+\cdots + (4y+1) and 1 + 3 + 5 + + ( 2 y + 1 ) 1+3+5+\cdots + (2y+1) , y > 0 \implies y > 0 .

Chew-Seong Cheong - 5 months, 1 week ago

Ah, I see it now. Thank you!

James Wilson - 5 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...