It's not only algebra manipulation!

Algebra Level 4

x = 1 + 1 2 + 1 1 + 1 2 + \begin{aligned} x = 1 + \dfrac{1}{2 + \dfrac{1}{1+ \dfrac{1}{2+ \ddots}}} \end{aligned}

Find ( 4 x 2 4 ) 2 + ( 8 x 3 10 ) 4 \left( 4x^{2} - 4 \right)^2 + \left(8x^{3} - 10 \right)^4 .

Note: Can you do this without algebra manipulation?


Try another problem on my set Let's Practice


The answer is 11676.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 21, 2017

x = 1 + 1 2 + 1 1 + 1 2 + = 1 + 1 2 + 1 x = 1 + x 2 x + 1 = 3 x + 1 2 x + 1 \begin{aligned} x & = 1 + \frac 1{2+\frac 1{1+\frac 1{2+\ddots}}} = 1 + \frac 1{2+\frac 1x} = 1 + \frac x{2x+1} = \frac {3x+1}{2x+1} \end{aligned}

x ( 2 x + 1 ) = 3 x + 1 2 x 2 + x = 3 x + 1 2 x 2 = 2 x + 1 \begin{aligned} \implies x(2x+1) & = 3x+1 \\ 2x^2 + x & = 3x+1 \\ \color{#3D99F6} 2x^2 & \color{#3D99F6} = 2x + 1 \end{aligned}

Now we need to find:

χ = ( 4 x 2 4 ) 2 + ( 8 x 3 10 ) 4 Note that 2 x 2 = 2 x + 1 = ( 2 ( 2 x + 1 ) 4 ) 2 + ( 4 x ( 2 x + 1 ) 10 ) 4 = ( 4 x 2 ) 2 + ( 8 x 2 + 4 x 10 ) 4 = 4 ( 2 x 1 ) 2 + ( 4 ( 2 x + 1 ) + 4 x 10 ) 4 = 4 ( 4 x 2 4 x + 1 ) + ( 12 x 6 ) 4 = 4 ( 2 ( 2 x + 1 ) 4 x + 1 ) + 1296 ( 2 x 1 ) 4 = 4 ( 3 ) + 1296 ( 3 2 ) = 11676 \begin{aligned} \chi & = \left(4x^2-4\right)^2 + \left(8x^3-10\right)^4 & \small \color{#3D99F6} \text{Note that } 2x^2 = 2x + 1 \\ & = \left(2(2x+1)-4\right)^2 + \left(4x(2x+1)-10\right)^4 \\ & = \left(4x-2\right)^2 + \left(8x^2+4x-10 \right)^4 \\ & = 4\left(2x-1\right)^2 + \left(4(2x+1)+4x-10 \right)^4 \\ & = 4\left(4x^2-4x+1 \right) + \left(12x-6 \right)^4 \\ & = 4\left(2(2x+1)-4x+1 \right) + 1296 \left(2x-1 \right)^4 \\ & = 4\left(3 \right) + 1296 \left(3^2 \right) \\ & = \boxed{11676} \end{aligned}

Fidel Simanjuntak
Mar 19, 2017

x = 1 + 1 2 + 1 1 + 1 2 + x = 1 + 1 2 + 1 x x 1 = 1 2 + 1 x x 1 = x 2 x + 1 ( 2 x + 1 ) ( x 1 ) = x 2 x 2 x 1 = x 2 x 2 2 x 1 = 0 \begin{aligned} x & = 1 + \dfrac{1}{2 + \dfrac{1}{1+ \dfrac{1}{2+ \cdots}}} \\ x & = 1 + \dfrac{1}{2+ \dfrac{1}{x}} \\ x-1 & = \dfrac{1}{2+ \dfrac{1}{x}} \\ x-1 & = \dfrac{x}{2x+1} \\ (2x+1)(x-1) & = x \\ 2x^2 -x -1 & = x \\ 2x^2 -2x -1 & =0 \end{aligned}

By Al-Khawarizmi, we have x = 1 + 3 2 Since x > 0 x = \dfrac{1+ \sqrt{3}}{2} \Rightarrow \text{Since} \space x>0 .

We have 4 x 2 = 4 ( ( 1 + 3 ) 2 4 ) 4x^2 = 4\left( \dfrac{(1+ \sqrt{3})^2}{4} \right)

4 x 2 = 2 3 + 4 4x^2 = 2\sqrt{3} + 4 .

And, 8 x 3 = 8 ( ( 1 + 3 ) 3 8 ) 8x^3 = 8\left( \dfrac{(1+\sqrt{3})^3}{8} \right)

8 x 3 = 6 3 + 10 8x^3 = 6\sqrt{3} + 10 .

Hence, ( 4 x 2 4 ) 2 + ( 8 x 3 10 ) 4 = ( 2 3 ) 2 + ( 6 3 ) 4 = 12 + 11664 = 11676 \left( 4x^2 - 4 \right)^2 + \left( 8x^3 -10 \right)^4 = (2\sqrt{3})^2 + (6\sqrt{3} ) ^4 = 12 + 11664 = \boxed{11676}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...