It's not so complex...

Algebra Level 3

If α \alpha and β \beta are two different complex numbers with β |\beta| = 1, find the value of β α 1 α β |\frac {\beta - \alpha}{1 - \overline{\alpha}\beta}|


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

As given in the question, β = 1 \left| \beta \right| =1

But, β β ˉ = β 2 β β ˉ = 1 \beta \bar { \beta } ={ \left| \beta \right| }^{ 2 }\\ \beta \bar { \beta } =1

Now in the given equation, put β = 1 β ˉ \beta =\frac { 1 }{ \bar { \beta } }

So, β α 1 α ˉ β = 1 β ˉ α 1 α ˉ 1 β ˉ β α 1 α ˉ β = 1 α β ˉ β ˉ α ˉ β α 1 α ˉ β β ˉ α ˉ 1 α β ˉ = 1 \left| \frac { \beta -\alpha }{ 1-\bar { \alpha } \beta } \right| =\left| \frac { \frac { 1 }{ \bar { \beta } } -\alpha }{ 1-\bar { \alpha } \frac { 1 }{ \bar { \beta } } } \right| \\ \\ \left| \frac { \beta -\alpha }{ 1-\bar { \alpha } \beta } \right| =\left| \frac { 1-\alpha \bar { \beta } }{ \bar { \beta } -\bar { \alpha } } \right| \\ \\ \left| \frac { \beta -\alpha }{ 1-\bar { \alpha } \beta } \right| \left| \frac { \bar { \beta } -\bar { \alpha } }{ 1-\alpha \bar { \beta } } \right| =1\\

Now, clearly from the last expression you can see that the two terms are conjugates of each other. So, their product can be given by,

β α 1 α ˉ β 2 = 1 { \left| \left| \frac { \beta -\alpha }{ 1-\bar { \alpha } \beta } \right| \right| }^{ 2 }=1

Now, since this is the square of a positive number, so,

β α 1 α ˉ β = 1 \left| \frac { \beta -\alpha }{ 1-\bar { \alpha } \beta } \right| =1

CHEERS!!:)

Sujoy Roy
May 6, 2015

β = 1 |\beta|=1 or, β β ˉ = 1 \beta \bar{\beta}=1 .

Now, β α 1 α ˉ β |\frac{\beta-\alpha}{1-\bar{\alpha}\beta}| = β α β β ˉ α ˉ β = |\frac{\beta-\alpha}{\beta \bar{\beta}-\bar{\alpha}\beta}| = β α β ( β ˉ α ˉ ) = |\frac{\beta-\alpha}{\beta (\bar{\beta}-\bar{\alpha})}| = 1 β × β α β ˉ α ˉ = \frac{1}{|\beta|}\times \frac{|\beta-\alpha|}{| \bar{\beta}-\bar{\alpha}|} = 1 =\boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...