It's not that difficult!

r = 0 n p = 0 r 1 ( ( n r ) ( r p ) 2 p ) = ? \large \displaystyle \sum_{r=0}^n \sum_{p=0}^{r-1} \left( \dbinom nr \dbinom r p 2^p \right) = \ ?

4 n 3 n + 1 4^{n}-3^{n}+1 4 n 3 n 1 4^{n}-3^{n}-1 4 n 3 n 4^{n}-3^{n} 4 n 3 n + 2 4^{n}-3^{n}+2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chirag Trasikar
Jan 29, 2015

Now, r = 0 n ( p = 0 r 1 ( n r ) ( r p ) 2 p ) = r = 0 n ( ( n r ) p = 0 r 1 ( r p ) 2 p ) \displaystyle \sum _{ r=0 }^{ n }({\displaystyle \sum _{ p=0 }^{ r-1 }{ {n \choose r}{r \choose p} 2^{p} }) } = \displaystyle \sum _{ r=0 }^{ n }({n \choose r}{\displaystyle \sum _{ p=0 }^{ r-1 }{ {r \choose p} 2^{p} } ) }

But p = 0 r ( r p ) 2 p = ( 1 + 2 ) r \displaystyle \sum _{ p=0 }^{ r }{ {r \choose p} 2^{p} } = (1+2)^{r}

Thus, p = 0 r 1 ( r p ) 2 p = ( 1 + 2 ) r 2 r \displaystyle \sum _{ p=0 }^{ r-1 }{ {r \choose p} 2^{p} } = (1+2)^{r}-2^{r}

Hence we have r = 0 n ( ( n r ) p = 0 r 1 ( r p ) 2 p ) \displaystyle \sum _{ r=0 }^{ n }({n \choose r}{\displaystyle \sum _{ p=0 }^{ r-1 }{ {r \choose p} 2^{p} } ) } = = r = 0 n ( n r ) ( 3 r 2 r ) \displaystyle \sum _{ r=0 }^{ n }{ {n \choose r}(3^{r}-2^{r})}

= r = 0 n ( n r ) 3 r r = 0 n ( n r ) 2 r = \displaystyle \sum _{ r=0 }^{ n }{ {n \choose r}3^{r}}- \displaystyle \sum _{ r=0 }^{ n }{ {n \choose r}2^{r}}

= ( 1 + 3 ) n ( 1 + 2 ) n = 4 n 3 n = (1+3)^{n} - (1+2)^{n} = \boxed{4^{n}-3^{n}}

Tijmen Veltman
Jan 30, 2015

We can 'cheat' using the multiple choice options; for n = 1 n=1 the double sum contains only one term which is equal to 1 1 , therefore 4 n 3 n \boxed{4^n-3^n} is the only possibility (since 4 1 3 1 = 1 4^1-3^1=1 ).

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...