It's overall quadratic

Algebra Level 3

The function f ( x ) = k = 1 5 ( x k ) 2 f(x)=\displaystyle \sum_{k=1}^5 (x-k)^2 has a minimum value at what value of x x ?

5 2 5 2 \frac 52 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Joshua Chin
Nov 3, 2015

For f ( x ) = k = 1 5 ( x k ) 2 f\left( x \right) =\sum _{ k=1 }^{ 5 }{ { (x-k) }^{ 2 } }

We obtain

( x 1 ) 2 + ( x 2 ) 2 + . . . + ( x 5 ) 2 = 5 x 2 ( 2 + 10 2 ) ( 5 ) x + 1 2 + 2 2 + . . . + 5 2 = 5 x 2 30 x + 5 × 6 × 11 6 = 5 x 2 30 x + 55 = 5 ( x 2 6 x + 11 ) = 5 ( x 3 ) 2 + 2 { (x-1) }^{ 2 }+{ (x-2) }^{ 2 }+...+{ (x-5) }^{ 2 }\\ =5{ x }^{ 2 }-\quad (\frac { 2+10 }{ 2 } )(5)x\quad +\quad { 1 }^{ 2 }+{ 2 }^{ 2 }+...+{ 5 }^{ 2 }\\ =5{ x }^{ 2 }-30x+\frac { 5\times 6\times 11 }{ 6 } \\ =5{ x }^{ 2 }-30x+55\\ =5({ x }^{ 2 }-6x+11)\\ =5{ (x-3) }^{ 2 }+2

Thus

min f ( x ) = 2 \min { f(x) } =2 iff

x 3 = 0 x = 3 x-3=0\\ x=3

Moderator note:

The minimum of a (standard) parabola occurs at the vertex of b 2 a - \frac{b}{2a} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...