It's rather unexpected

Calculus Level 5

0 0 sin x sin t sin ( x + t ) x 2 t + t 2 x d x d t \large \int_{0}^{\infty} \int_{0}^{\infty} \dfrac{ \sin x \sin t \sin (x+t) }{x^2t + t^2x} \mathrm{d}x \mathrm{d}t

If the value of the integral above is A A , determine 1 0 6 A \left \lfloor 10^6 A \right \rfloor .


The answer is 1644934.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Efren Medallo
Jun 1, 2017

First we let

F ( a ) = 0 0 sin x sin t sin ( a ( x + t ) ) x t ( x + t ) F(a) = \displaystyle \int_0^{\infty} \int_0^{\infty} \dfrac{ \sin x \sin t \sin (a(x+t))}{xt(x+t)}

Now, d d a sin ( a ( x + t ) ) = ( x + t ) cos ( a ( x + t ) ) \dfrac{ \mathrm{d}}{\mathrm{d}a} \sin (a(x+t)) = (x+t) \cos (a(x+t)) . That will simplify F ( a ) F'(a) into

F ( a ) = 0 0 sin x sin t ( cos a x cos a t sin a x sin a t ) x t F'(a) = \displaystyle \int_0^{\infty} \int_0^{\infty} \dfrac{ \sin x \sin t ( \cos ax \cos at - \sin ax \sin at)}{xt}

while this may seem a little more complicated, note that

0 sin x cos a x x d x = π 2 \displaystyle\int_0^{\infty} \dfrac{ \sin x \cos ax }{x} \mathrm{d}x = \frac{\pi}{2}

we'll let this integral I A I_A . Meanwhile, note too that

0 sin x sin a x x d x = 1 2 ln ( 1 a 1 + a ) \displaystyle\int_0^{\infty} \dfrac{ \sin x \sin ax }{x} \mathrm{d}x = \frac{1}{2} \ln \bigg( \frac{1-a}{1+a} \bigg)

we'll let this integral I B I_B .

This will further simplify F ( a ) F'(a) .

F ( a ) = ( I A ) 2 ( I B ) 2 F'(a) = (I_A)^2 - (I_B)^2

F ( a ) = π 2 4 1 4 ( ln 2 1 a 1 + a ) F'(a) = \dfrac{\pi^2}{4} - \frac{1}{4} \bigg( \ln^2 \frac {1-a}{1+a}\bigg)

integrating this from 0 0 to 1 1 , we will get

F ( 1 ) = π 2 4 0 1 ln 2 ( 1 a 1 + a ) d a F(1) = \dfrac{\pi^2}{4} - \int_0^1 \ln^2 \bigg( \frac{1-a}{1+a} \bigg) \mathrm{d}a

Note again, that 0 1 ln 2 ( 1 x 1 + x ) d x = π 2 3 \displaystyle \int_0^1 \ln^2 \bigg( \frac{1-x}{1+x} \bigg) \mathrm{d}x = \frac{\pi^2}{3} .

This will now let us find our answer.

F ( 1 ) = π 2 4 1 4 π 2 3 = π 2 6 F(1) = \frac{ \pi^2 }{4} - \frac{1}{4} \cdot \frac{\pi^2}{3} = \boxed{ \frac{\pi^2}{6}}

and there, that enables us to find 1 0 6 A \lfloor 10^6 A \rfloor .

Can you guess any pattern, for the case n = 2 n=2 it is π 2 6 \dfrac{\pi^2}{6} , what's for n = 4 n=4 ? The strange part about the problem is observing the case 2 often misleads,although there is an obvious pattern

Gone completely over the head.... :-/:-/

Istiak Reza - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...