It's rational integral

Calculus Level 2

1 2 x 4 + 2 x + 2 x 5 + x 4 d x = 2 n + 1 4 n + ln ( n n 1 ) \int_1^2 \frac {x^4+2x+2}{x^5+x^4} \, dx = \frac {2n+1}{4n} + \ln \left(\frac n{n-1} \right)

Find n n .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sathvik Acharya
Apr 2, 2021

Claim: x 4 + 2 x + 2 x 5 + x 4 d x = ln ( x + 1 ) 2 3 x 3 + C \int \frac{x^4+2x+2}{x^5+x^4}\;\mathrm{d} x=\ln(|x+1|)-\frac{2}{3x^3}+C Proof: x 4 + 2 x + 2 x 5 + x 4 d x = x 4 + 2 ( x + 1 ) x 4 ( x + 1 ) d x = ( 1 x + 1 + 2 x 4 ) d x = 1 x + 1 d x + 2 x 4 d x = ln ( x + 1 ) 2 3 x 3 + C \begin{aligned} \int \frac{x^4+2x+2}{x^5+x^4}\;\mathrm{d} x&=\int \frac{x^4+2(x+1)}{x^4(x+1)}\;\mathrm{d} x \\ \\ &=\int \left(\frac{1}{x+1}+\frac{2}{x^4} \right)\;\mathrm{d}x \\ \\ &=\int \frac{1}{x+1}\;\mathrm{d}x+\int \frac{2}{x^4}\;\mathrm{d}x \\ \\ &=\ln(|x+1|)-\frac{2}{3x^3}+C \end{aligned} Evaluating the given definite integral, we have, 1 2 x 4 + 2 x + 2 x 5 + x 4 d x = [ ln ( x + 1 ) 2 3 x 3 ] 1 2 = ( ln ( 3 ) 1 12 ) ( ln ( 2 ) 2 3 ) = ln ( 3 2 ) + 7 12 \begin{aligned} \int^{2}_1 \frac{x^4+2x+2}{x^5+x^4}\;\mathrm{d} x&= \left[\ln(|x+1|)-\frac{2}{3x^3}\right]^{2}_1 \\ \\ &=\left(\ln(3)-\frac{1}{12}\right)-\left(\ln(2)-\frac{2}{3}\right) \\ \\ &=\ln\left(\frac{3}{2}\right)+\frac{7}{12} \end{aligned} Therefore, 2 n + 1 4 n = 7 12 \;\dfrac{2n+1}{4n}=\dfrac{7}{12}\; and ln ( n n 1 ) = ln ( 3 2 ) n = 3 \;\ln\left(\dfrac{n}{n-1}\right)=\ln\left(\dfrac{3}{2}\right)\implies \boxed{n=3}

I = 1 2 x 4 + 2 x + 2 x 5 + x 4 d x = 1 2 x 4 + 2 ( x + 1 ) x 4 ( x + 1 ) d x = 1 2 ( 1 x + 1 + 2 x 4 ) d x = ln ( x + 1 ) 2 3 x 3 1 2 = ln 3 1 12 ln 2 + 2 3 = 7 12 ln 3 2 \begin{aligned} I & = \int_1^2 \frac {x^4+2x+2}{x^5+x^4} dx \\ & = \int_1^2 \frac {x^4 + 2(x+1)}{x^4(x+1)} dx \\ & = \int_1^2 \left(\frac 1{x+1} + \frac 2{x^4} \right) dx \\ & = \ln (x+1) - \frac 2{3x^3} \ \bigg|_1^2 \\ & = \ln 3 - \frac 1{12} - \ln 2 + \frac 23 \\ & = \frac 7{12} - \ln \frac 32 \end{aligned}

Therefore n = 3 n=\boxed 3 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...