It's really a matter of simplification

Algebra Level 3

( x + 1 x ) 6 ( x 6 + 1 x 6 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) \large \frac{\left(x+\dfrac{1}{x}\right)^6 - \left(x^6 + \dfrac{1}{x^6}\right) - 2}{\left(x+\dfrac{1}{x}\right)^3 + \left(x^3+\dfrac{1}{x^3}\right)}

Find the minimum value of the expression above for all x > 0 x>0 .


Note: This particular problem appeared in the 1998 Putnam Math Competition.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
Sep 14, 2016

The question is already posted here

f ( x ) = ( x + 1 x ) 6 ( x 6 + 1 x 6 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) f ( x ) = ( x + 1 x ) 6 ( ( x 3 ) 2 + 1 ( x 3 ) 2 + 2 x 3 1 x 3 ) ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) f ( x ) = ( ( x + 1 x ) 3 ) 2 ( x 3 + 1 x 3 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) f ( x ) = ( ( x + 1 x ) 3 ( x 3 + 1 x 3 ) ) ( ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) ) ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) f ( x ) = 3 ( x + 1 x ) Using A.M - G.M x + 1 x 2 f ( x ) Min. = 6 f(x)=\dfrac{\left(x+\dfrac{1}{x}\right)^6-\left( x^6+\dfrac{1}{x^6}\right)-2}{\left(x+\dfrac{1}{x}\right)^3+\left( x^3+\dfrac{1}{x^3}\right)} \implies f(x)=\dfrac{\left(x+\dfrac{1}{x}\right)^6-\left( (x^3)^2+\dfrac{1}{(x^3)^2}+2\cdot x^3\cdot\dfrac{1}{x^3}\right)}{\left(x+\dfrac{1}{x}\right)^3+\left( x^3+\dfrac{1}{x^3}\right)} \\ f(x)=\dfrac{\left( \left( x+\dfrac{1}{x} \right)^3 \right)^2-\left( x^3+\dfrac{1}{x^3}\right)^2}{\left(x+\dfrac{1}{x}\right)^3+\left( x^3+\dfrac{1}{x^3}\right)} \\ f(x)=\dfrac{\left( \left(x+\dfrac{1}{x}\right)^3-\left( x^3+\dfrac{1}{x^3}\right) \right) \left( \cancel{\left(x+\dfrac{1}{x}\right)^3+\left( x^3+\dfrac{1}{x^3}\right)} \right)}{\cancel{\left(x+\dfrac{1}{x}\right)^3+\left( x^3+\dfrac{1}{x^3}\right)}} \\ f(x)=3\left( x+\dfrac{1}{x} \right) \\ \text{Using A.M - G.M} \quad x+\dfrac{1}{x} \ge 2 \\ \boxed{f(x)_{\text{Min.}} = 6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...