How Are They All Linked Together?

Algebra Level 2

4 a = 5 5 b = 6 6 c = 7 7 d = 8 \large \begin{aligned} {4^{\color{#D61F06}a}=5} \\ {5^{\color{#3D99F6}b}=6} \\ {6^{\color{#20A900}c}=7} \\ {7^{\color{magenta}d} = 8} \\ \end{aligned}

Supose a \color{#D61F06}{a} , b \color{#3D99F6}{b} , c \color{#20A900}{c} and d \color{magenta}{d} satisfy the system of equations above, find a × b × c × d \color{#D61F06}{a}\times \color{#3D99F6}{b}\times \color{#20A900}{c}\times \color{magenta}{d} .

5 4 \dfrac{5}{4} 3 2 \dfrac{3}{2} 8 3 \dfrac{8}{3} 1 1 2 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sravanth C.
Apr 10, 2016

I thought I can post a method without using logarithms , which may not appear simpler than the remaining solutions.

4 a = 5 4 a b = 5 b 5 b = 6 4 a b c = 6 c 6 c = 7 4 a b c d = 7 d 7 d = 8 4 a b c d = 8 \large \begin{aligned} \color{#D61F06}{4^a=5} &\implies \color{#D61F06}{4^{a\color{#3D99F6}b}}=\color{#3D99F6}{5^b}\\ \color{#3D99F6}{5^b=6} &\implies \color{#D61F06}{4^{a\color{#3D99F6}b\color{#20A900}c}}\color{#20A900}{=6^c}\\ \color{#20A900}{6^c=7} &\implies\color{#D61F06}{4^{a\color{#3D99F6}b\color{#20A900}c\color{magenta} d}}\color{magenta}{=7^d} \\ \color{magenta}{7^d = 8} &\implies\color{#D61F06}{4^{a\color{#3D99F6}b\color{#20A900}c\color{magenta} d}}\color{magenta}{=8}\\ \end{aligned}

4 a b c d = 8 = 4 3 / 2 a × b × c × d = 3 2 \large\begin{aligned} \therefore\color{#D61F06}{4^{a\color{#3D99F6}b\color{#20A900}c\color{magenta}d}}&=8=4^{3/2}\\ \implies\color{#D61F06}a\times\color{#3D99F6}b\times\color{#20A900}c\times\color{magenta}d &=\dfrac 32 \end{aligned}

Quite a Co lo rf ul \color{#D61F06}{\text{Co}}\color{#3D99F6}{\text{lo}}\color{#20A900}{\text{rf}}\color{magenta}{\text{ul}} solution :)

Same way BTW

Abdur Rehman Zahid - 5 years, 2 months ago
Rishabh Jain
Apr 10, 2016

x y = z y = log x z = ln z ln x x^y=z\implies y=\log_x z=\dfrac{\ln z}{\ln x} 4 a = 5 a = ln 5 ln 4 5 b = 6 b = ln 6 ln 5 6 c = 7 c = ln 7 ln 6 7 d = 8 d = ln 8 ln 7 \Large{\color{#D61F06}{4^a=5} \implies a=\dfrac{\ln 5}{\ln 4}\\ \color{#3D99F6}{5^b=6} \implies b=\dfrac{\ln 6}{\ln 5}\\ \color{#20A900}{6^c=7}\implies c=\dfrac{\ln 7}{\ln 6}\\ \color{magenta}{7^d = 8}\implies d=\dfrac{\ln 8}{\ln 7}}

a × b × c × d = ln 5 ln 4 × ln 6 ln 5 × ln 7 ln 6 × ln 8 ln 7 \color{#D61F06}{a}\times \color{#3D99F6}{b}\times \color{#20A900}{c}\times \color{magenta}{d}=\dfrac{\cancel{\ln 5}}{\ln 4}\times\dfrac{\cancel{\ln 6}}{\cancel{\ln 5}}\times \dfrac{\cancel{\ln 7}}{\cancel{\ln 6}}\times\dfrac{\ln 8}{\cancel{\ln 7}} = ln 8 ln 4 = 3 ln 2 2 ln 2 = 3 2 \large=\dfrac{\ln8}{\ln4}=\dfrac{3\cancel{\ln 2}}{2\cancel{\ln2}}=\huge\boxed{\dfrac{3}{2}}

a × b × c × d = log 4 5 × log 5 6 × log 6 7 × log 7 8 = log 4 8 = a \times b \times c \times d = \log_{4} 5 \times \log_{5} 6 \times \log_{6} 7 \times \log _{7} 8 = \log_{4} 8 = log 2 2 2 3 = 3 2 \log_{2^2} 2^3 = \frac{3}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...