Complicated Quadratic Roots

Algebra Level 5

Let α and β be the roots of x 2 6 x 2 = 0 x^2 - 6x - 2 = 0 with α>β and a n = α n β n a_{n} = α^n - β^n and also let there be some quantity X = a 10 2 a 8 2 a 9 X = \frac{a_{10} - 2a_{8}}{2a_{9}} . Also there is a quadratic equation x 2 ( m X ) x + m = 0 x^2-(m-X)x+m=0 where m is some real quantity.

Find number of all the possible integral values of m such that both the roots of this quadratic equation lie in the interval (1,2).


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Jubayer Nirjhor
Nov 14, 2014

The equation implies x n = 6 x n 1 + 2 x n 2 x^n=6x^{n-1}+2x^{n-2} from where we get a n = α n β n = ( 6 α n 1 + 2 α n 2 ) ( 6 β n 1 + 2 β n 2 ) = 6 ( α n 1 β n 1 ) + 2 ( α n 2 β n 2 ) = 6 a n 1 + 2 a n 2 \begin{aligned} a_n=\alpha^n-\beta^n &=&\left(6\alpha^{n-1}+2\alpha^{n-2}\right)-\left(6\beta^{n-1}+2\beta^{n-2}\right) \\ &=& 6\left(\alpha^{n-1}-\beta^{n-1}\right)+2\left(\alpha^{n-2}-\beta^{n-2}\right) \\ &=& 6a_{n-1}+2a_{n-2} \end{aligned} and hence a 10 2 a 8 = ( 6 a 9 + 2 a 8 ) 2 a 8 = 6 a 9 a_{10}-2a_8=\left(6a_9+2a_8\right)-2a_8=6a_9 . Thus X = 6 a 9 / 2 a 9 = 3 X=6a_9/2a_9=3 . So our quadratic is x 2 ( m 3 ) x + m = 0 x^2-\left(m-3\right)x+m=0 . Now if both the roots lie in ( 1 , 2 ) (1,2) then their sum m 3 m-3 lies in ( 2 , 4 ) (2,4) . Hence m m lies in ( 5 , 7 ) (5,7) . Since m Z m\in\mathbb{Z} we must have m = 6 m=6 which leads to non-real roots. So there's no such integral value of m m . \square

This solution should get more votes than the current top-voted one.

Arif Ahmed - 6 years, 3 months ago

α = 3 + 11 β = 3 11 u s i n g v a l u e s t o d e t e r m i n e X : ( 3 + 11 ) 10 ( 3 11 ) 10 2 ( 3 + 11 ) 8 + 2 ( 3 11 ) 8 2 [ ( 3 + 11 ) 9 ( 3 11 ) 9 ] a f t e r m a n i p u l a t i o n : 6 [ ( 3 + 11 ) 9 ( 3 11 ) 9 ] 2 [ ( 3 + 11 ) 9 ( 3 11 ) 9 ] = 3 = X e q u a t i o n : x 2 ( m 3 ) x + m = 0 b y a p p l y i n g t w o c o n d i t i o n s : 1 ) D 0 2 ) 1 < b 2 a < 2 ( 1 ) ( 2 ) ϕ \alpha =3+\sqrt { 11 } \\ \beta =3-\sqrt { 11 } \\ using\quad values\quad to\quad determine\quad X\quad :\\ \frac { { (3+\sqrt { 11 } ) }^{ 10 }-{ (3-\sqrt { 11 } ) }^{ 10 }-2{ (3+\sqrt { 11 } ) }^{ 8 }+2{ (3-\sqrt { 11 } ) }^{ 8 } }{ 2[{ (3+\sqrt { 11 } ) }^{ 9 }-{ (3-\sqrt { 11 } ) }^{ 9 }] } \\ after\quad manipulation\quad :\\ \frac { 6[{ (3+\sqrt { 11 } ) }^{ 9 }-({ 3-\sqrt { 11 } ) }^{ 9 }] }{ 2[({ 3+\sqrt { 11 } ) }^{ 9 }-{ (3-\sqrt { 11 } ) }^{ 9 }] } =\quad 3\quad =\quad X\\ equation:\quad \\ { x }^{ 2 }-(m-3)x+m=0\\ by\quad applying\quad two\quad conditions:\\ 1)\quad D\ge 0\\ 2)\quad 1<\frac { -b }{ 2a } <2\\ (1)\cap (2)\in \phi \\ \\

There is no need to calculate alpha & beta

Sudhanshu Dalela - 6 years, 7 months ago

I like how you used the vertex being between 1 and 2 to get another inequality involving m.

Gino Pagano - 6 years, 7 months ago
Ayush Verma
Nov 13, 2014

x 2 6 x 2 = 0 x 10 6 x 9 2 x 8 = 0 α 10 6 α 9 2 α 8 = β 10 6 β 9 2 β 8 = 0 ( α 10 β 10 ) 6 ( α 9 β 9 ) 2 ( α 8 β 8 ) = 0 X = 3 n o w , f o r r o o t o f e q u a t i o n f ( x ) = x 2 ( m 3 ) x m = 0 t o l i e i n ( 1 , 2 ) f o l l o w i n g 3 c o n d i t i o n s h o u l d b e f u l f i l l e d . ( i ) f ( 1 ) f ( 2 ) > 0 m < 10 ( i i ) b 2 4 a c 0 m ( 1 , 9 ) ( i i i ) 1 < m 3 2 < 2 5 < m < 7 s o , i t i s c l e a r t h a t t h e r e i s n o p o s s i b l e v a l u e o f m . { x }^{ 2 }-6x-2=0\quad \Rightarrow { x }^{ 10 }-6{ x }^{ 9 }-2{ x }^{ 8 }=0\\ \\ \Rightarrow { \alpha }^{ 10 }-6{ { \alpha }^{ 9 } }-2{ \alpha }^{ 8 }={ \beta }^{ 10 }-6{ \beta }^{ 9 }-2{ \beta }^{ 8 }=0\\ \\ \Rightarrow ({ \alpha }^{ 10 }-{ \beta }^{ 10 })-6({ \alpha }^{ 9 }-{ \beta }^{ 9 })-2({ \alpha }^{ 8 }-{ \beta }^{ 8 })=0\\ \\ \Rightarrow X=3\quad now,\\ \\ for\quad root\quad of\quad equation\quad f\left( x \right) ={ x }^{ 2 }-(m-3)x-m=0\\ \\ to\quad lie\quad in\quad (1,2)\quad following\quad 3\quad condition\\ \\ should\quad be\quad fulfilled.\\ \\ (i)\quad f\left( 1 \right) f\left( 2 \right) >0\quad \Rightarrow m<10\\ \\ (ii){ b }^{ 2 }-4ac\ge 0\quad \Rightarrow m\notin \left( 1,9 \right) \\ \\ (iii)1<\cfrac { m-3 }{ 2 } <2\quad \Rightarrow 5<m<7\\ \\ so,it\quad is\quad clear\quad that\quad there\quad is\quad no\\ \\ possible\quad value\quad of\quad m.

Your's and Nirjhor's solution should be the top-voted one.

Arif Ahmed - 6 years, 3 months ago
Aditya Tiwari
Nov 13, 2014

Exactly, Without calculating alpha and beta also the value of expression can be found out.

Good question.

Aayush Patni - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...