Its sine function!

Geometry Level 3

If sin 9 ° = a b a a ϕ a a \sin 9\degree = \sqrt{\dfrac{a-\sqrt[a^a]b \cdot \sqrt \phi}{a^a}} for positive coprime integers a a and b b , find the value of

log a ( 80 sin ( 3 a b ° ) b ) \log_a \left(\dfrac{80 \sin(3ab\degree)}{b} \right)

Notations:


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Starting from the identity cos π 5 + cos 3 π 5 = 1 2 \cos \dfrac \pi 5 + \cos \dfrac {3\pi}5 = \dfrac 12 ,

cos 3 6 + cos 10 8 = 1 2 cos 3 6 cos 7 2 = 1 2 4 cos 2 3 6 2 cos 3 6 1 = 0 cos 3 6 = 1 + 5 4 2 cos 2 1 8 1 = 1 + 5 4 cos 2 1 8 = 5 + 5 8 ( 1 2 sin 2 9 ) 2 = 5 + 5 8 32 sin 4 9 32 sin 2 9 + 3 5 = 0 sin 2 9 = 4 2 ( 5 + 5 ) 8 Note that sin 9 0 sin 9 = 2 5 5 + 1 2 4 = 2 5 2 2 φ 2 2 where φ denotes the golden ratio. \begin{aligned} \cos 36^\circ + \cos 108^\circ & = \frac 12 \\ \cos 36^\circ - \cos 72^\circ & = \frac 12 \\ 4\cos^2 36^\circ - 2\cos 36^\circ - 1 & = 0 \\ \implies \cos 36^\circ & = \frac {1+\sqrt 5}4 \\ 2 \cos^2 18^\circ - 1 & = \frac {1+\sqrt 5}4 \\ \implies \cos^2 18^\circ & = \frac {5+\sqrt 5}8 \\ \left(1-2\sin^2 9^\circ \right)^2 & = \frac {5+\sqrt 5}8 \\ 32 \sin^4 9^\circ - 32 \sin^2 9^\circ + 3 - \sqrt 5 & = 0 \\ \sin^2 9^\circ & = \frac {4 \blue - \sqrt{2(5+\sqrt 5)}}8 & \small \blue{\text{Note that }\sin 9^\circ \approx 0} \\ \implies \sin 9^\circ & = \sqrt{\frac {2-\sqrt{\sqrt 5 \cdot \frac {\sqrt 5 +1}2}}4} \\ & = \sqrt {\frac {2-\sqrt[2^2]5 \cdot \sqrt \blue \varphi}{2^2}} & \small \blue{\text{where }\varphi \text{ denotes the golden ratio.}} \end{aligned}

Therefore log a ( 80 sin ( 2 a b ) b ) = log 2 ( 80 sin 3 0 5 ) = log 2 8 = 3 \log_a \left(\dfrac {80\sin(2ab^\circ)}b \right) = \log_2 \left( \dfrac {80 \sin 30^\circ}5 \right) = \log_2 8 = \boxed 3 .

Pi Han Goh
Jan 9, 2021

Claim: cos ( 3 6 ) = 1 + 5 4 \cos(36^\circ) = \dfrac{1+\sqrt5}4 .

Proof : Using the complementary angle formula, cos ( A ) = cos ( 18 0 A ) \cos(A) = - \cos(180^\circ - A) , we have cos ( 3 6 ) + cos ( 14 4 ) = 0 \cos(36^\circ) + \cos(144^\circ) = 0

Apply the double-angle formula, cos ( 2 A ) = 2 cos 2 ( A ) 1 \cos(2A) = 2\cos^2(A) - 1 .

With cos ( 14 4 ) = 2 cos 2 ( 7 2 ) 1 \cos(144^\circ) = 2\cos^2(72^\circ) - 1 and cos ( 7 2 ) = 2 cos 2 ( 3 6 ) 1 \cos(72^\circ) = 2\cos^2(36^\circ) - 1 . Also denote y = cos ( 3 6 ) y = \cos(36^ \circ) , y + [ 2 ( 2 y 2 1 ) 2 1 ] = 0 8 y 4 8 y 2 + y + 1 = 0 ( y + 1 ) ( 2 y 1 ) ( 4 y 2 2 y 1 ) = 0 y + \Big[2 (2y^2 - 1)^2 - 1\Big] = 0 \quad\Leftrightarrow \quad 8y^4 - 8y^2 + y + 1 = 0 \quad\Leftrightarrow \quad (y + 1)(2y-1)(4y^2-2y - 1 ) = 0

Since 1 > cos ( 3 6 ) > cos ( 6 0 ) = 1 2 1> \cos(36^\circ) > \cos(60^\circ) = \frac12 , then y = cos ( 3 6 ) = 1 + 5 4 y = \cos(36^\circ) = \dfrac{1+\sqrt5}4 . \quad \blacksquare


Now we will be using the half-angle formula repeatedly, cos ( A ) = 2 cos 2 ( A 2 ) 1 = 1 2 cos 2 ( A 2 ) \cos(A) = 2\cos^2(\tfrac A2) - 1 = 1 - 2\cos^2(\tfrac A2)

Then, cos ( 3 6 ) = 1 + 5 4 4 cos 2 ( 1 8 ) = 5 + 5 2 2 cos ( 1 8 ) = 5 4 ϕ 2 4 sin 2 ( 9 ) = 5 4 ϕ sin ( 9 ) = 2 5 4 ϕ 4 \begin{array} { r c l } \cos(36^\circ) &=& \dfrac{1+\sqrt5}4 \\ 4 \cos^2(18^\circ) &=& \dfrac{\sqrt5 + 5}2 \\ 2\cos(18^\circ) &=& \sqrt[4]{5} \cdot \sqrt{\phi} \\ 2 - 4\sin^2(9^\circ) &=& \sqrt[4]{5} \cdot \sqrt{\phi} \\ \sin(9^\circ) &=&\large \sqrt{\dfrac{2 - \sqrt[4]{5} \cdot \sqrt{\phi}}{4} } \end{array} Hence, ( a , b ) = ( 2 , 5 ) log a ( 80 sin ( 3 a b ° ) b ) = 3 . (a,b) = (2,5) \Rightarrow \log_a \left(\dfrac{80 \sin(3ab\degree)}{b} \right) = \boxed3 .

2 sin ( π 20 ) cos ( π 20 ) = sin ( π 10 ) 2\sin(\frac{π}{20})\cos(\frac{π}{20}) = \sin(\frac{π}{10}) Taking sin ( π 20 ) = t , cos ( π 20 ) = 1 t 2 \sin(\frac{π}{20}) = t , \cos(\frac{π}{20})= \sqrt{1-t^2 }

sin ( π 10 ) = 5 1 4 \blue\sin{(\frac{π}{10})}= \frac{\sqrt{5}-1}{4} 2 t 1 t 2 = 5 1 4 t 2 ( 1 t 2 ) = ( 5 1 8 ) 2 2t\sqrt{1-t^2} = \frac{\sqrt{5}-1}{4} \implies t^2 (1-t^2) = (\frac{\sqrt{5}-1}{8})^2 t 4 t 2 + 3 5 32 = 0 t 2 = 1 ± 1 3 5 8 2 t^4 -t^2 +\frac{3-\sqrt{5}}{32}=0\implies t^2 = \frac{1±\sqrt{1-\frac{3-\sqrt{5}}{8}}}{2} t = 2 5 4 5 + 1 2 2 t= \sqrt{\frac{2-\sqrt[4]{5}\sqrt{\frac{\sqrt{5}+1}{2}}}{2}} = 2 5 4 ϕ 2 =\sqrt{\frac{2-\sqrt[4]{5}\sqrt{\phi}}{2}} Answer is log 2 ( 80 sin ( 30 ° ) 5 ) = 3 \color{#20A900} \boxed {\log_2 (\frac{80\sin(30°)}{5})=3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...