If sin 9 ° = a a a − a a b ⋅ ϕ for positive coprime integers a and b , find the value of
lo g a ( b 8 0 sin ( 3 a b ° ) )
Notations:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Claim: cos ( 3 6 ∘ ) = 4 1 + 5 .
Proof : Using the complementary angle formula, cos ( A ) = − cos ( 1 8 0 ∘ − A ) , we have cos ( 3 6 ∘ ) + cos ( 1 4 4 ∘ ) = 0
Apply the double-angle formula, cos ( 2 A ) = 2 cos 2 ( A ) − 1 .
With cos ( 1 4 4 ∘ ) = 2 cos 2 ( 7 2 ∘ ) − 1 and cos ( 7 2 ∘ ) = 2 cos 2 ( 3 6 ∘ ) − 1 . Also denote y = cos ( 3 6 ∘ ) , y + [ 2 ( 2 y 2 − 1 ) 2 − 1 ] = 0 ⇔ 8 y 4 − 8 y 2 + y + 1 = 0 ⇔ ( y + 1 ) ( 2 y − 1 ) ( 4 y 2 − 2 y − 1 ) = 0
Since 1 > cos ( 3 6 ∘ ) > cos ( 6 0 ∘ ) = 2 1 , then y = cos ( 3 6 ∘ ) = 4 1 + 5 . ■
Now we will be using the half-angle formula repeatedly, cos ( A ) = 2 cos 2 ( 2 A ) − 1 = 1 − 2 cos 2 ( 2 A )
Then, cos ( 3 6 ∘ ) 4 cos 2 ( 1 8 ∘ ) 2 cos ( 1 8 ∘ ) 2 − 4 sin 2 ( 9 ∘ ) sin ( 9 ∘ ) = = = = = 4 1 + 5 2 5 + 5 4 5 ⋅ ϕ 4 5 ⋅ ϕ 4 2 − 4 5 ⋅ ϕ Hence, ( a , b ) = ( 2 , 5 ) ⇒ lo g a ( b 8 0 sin ( 3 a b ° ) ) = 3 .
2 sin ( 2 0 π ) cos ( 2 0 π ) = sin ( 1 0 π ) Taking sin ( 2 0 π ) = t , cos ( 2 0 π ) = 1 − t 2
sin ( 1 0 π ) = 4 5 − 1 2 t 1 − t 2 = 4 5 − 1 ⟹ t 2 ( 1 − t 2 ) = ( 8 5 − 1 ) 2 t 4 − t 2 + 3 2 3 − 5 = 0 ⟹ t 2 = 2 1 ± 1 − 8 3 − 5 t = 2 2 − 4 5 2 5 + 1 = 2 2 − 4 5 ϕ Answer is lo g 2 ( 5 8 0 sin ( 3 0 ° ) ) = 3
Problem Loading...
Note Loading...
Set Loading...
Starting from the identity cos 5 π + cos 5 3 π = 2 1 ,
cos 3 6 ∘ + cos 1 0 8 ∘ cos 3 6 ∘ − cos 7 2 ∘ 4 cos 2 3 6 ∘ − 2 cos 3 6 ∘ − 1 ⟹ cos 3 6 ∘ 2 cos 2 1 8 ∘ − 1 ⟹ cos 2 1 8 ∘ ( 1 − 2 sin 2 9 ∘ ) 2 3 2 sin 4 9 ∘ − 3 2 sin 2 9 ∘ + 3 − 5 sin 2 9 ∘ ⟹ sin 9 ∘ = 2 1 = 2 1 = 0 = 4 1 + 5 = 4 1 + 5 = 8 5 + 5 = 8 5 + 5 = 0 = 8 4 − 2 ( 5 + 5 ) = 4 2 − 5 ⋅ 2 5 + 1 = 2 2 2 − 2 2 5 ⋅ φ Note that sin 9 ∘ ≈ 0 where φ denotes the golden ratio.
Therefore lo g a ( b 8 0 sin ( 2 a b ∘ ) ) = lo g 2 ( 5 8 0 sin 3 0 ∘ ) = lo g 2 8 = 3 .