It's so easy !!

Calculus Level 2

if f ( 0 ) = f ( 1 ) = 0 , f ( 1 ) = 2 , y = f ( e x ) . e f ( x ) f\left( 0 \right) =f\left( 1 \right) =0,\quad f^{ ' }\left( 1 \right) =2,\quad y=f\left( { e }^{ x } \right) .{ e }^{ f\left( x \right) }\quad then find d y d x \frac { dy }{ dx } \quad at x = 0 x=0


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

J Thompson
Sep 25, 2014

Let u = f ( e x ) u = \mathrm{f}(e^x) and v = e f ( x ) v = e^{\mathrm{f}(x)} .

Then d u d x = f ( e x ) \frac{\mathrm{d}u}{\mathrm{d}x} = \mathrm{f}'(e^x) and d v d x = f ( x ) × e f ( x ) \frac{\mathrm{d}v}{\mathrm{d}x} = \mathrm{f}'(x) \times e^{\mathrm{f}(x)} .

By the product rule, d y d x = v d u d x + u d v d x \frac{\mathrm{d}y}{\mathrm{d}x} = v\frac{\mathrm{d}u}{\mathrm{d}x} + u\frac{\mathrm{d}v}{\mathrm{d}x} .

Substituting in the expressions from above, we get d y d x = e f ( x ) × f ( e x ) + f ( e x ) × f ( x ) × e f ( x ) \frac{\mathrm{d}y}{\mathrm{d}x} = e^{\mathrm{f}(x)} \times \mathrm{f}'(e^x) + \mathrm{f}(e^x) \times \mathrm{f}'(x) \times e^{\mathrm{f}(x)} .

From the information in the question, when x = 0 x = 0 this reduces to d y d x = e 0 × f ( 1 ) + f ( 1 ) × f ( 0 ) × e 0 \frac{\mathrm{d}y}{\mathrm{d}x} = e^0 \times \mathrm{f}'(1) + \mathrm{f}(1) \times \mathrm{f}'(0) \times e^0 , which simplifies further to d y d x = 1 × 2 + 0 × f ( 0 ) × 1 \frac{\mathrm{d}y}{\mathrm{d}x} = 1 \times 2 + 0 \times \mathrm{f}'(0) \times 1 which is clearly equal to 2 \boxed{2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...