It's the year 2017

( 28 a b b a + 1 ) ( a b b a ) = 2017 \large (28a^bb^a+1)(a^b-b^a)=2017

If a a and b b are positive integers satisfying the equation above, find a b a-b .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tommy Li
Jan 5, 2017

Note that 2017 2017 is a prime number and a a and b b are positive integers satisfying the equation above

{ 28 a b b a + 1 = 2017 a b b a = 1 \large \begin{cases} 28a^bb^a+1=2017 \\ a^b-b^a=1 \end{cases} or { 28 a b b a + 1 = 1 a b b a = 2017 \large \begin{cases} 28a^bb^a+1=1 \\ a^b-b^a=2017 \end{cases} (rej.)

{ 28 ( 1 + b a ) b a + 1 = 2017 a b = 1 + b a \large \Rightarrow \begin{cases} 28(1+b^a)b^a+1=2017 \\ a^b=1+b^a \end{cases}

{ ( 1 + b a ) b a = 72 a b = 1 + b a \large \Rightarrow \begin{cases} (1+b^a)b^a=72 \\ a^b=1+b^a \end{cases}

{ b a = 8 a b = 9 \large \Rightarrow \begin{cases} b^a=8 \\ a^b=9 \end{cases}

{ a = 3 b = 2 \large \Rightarrow \begin{cases} a=3\\ b=2 \end{cases}

a b = 3 2 = 1 \large \Rightarrow a-b=3-2=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...