Given that
∫ 0 1 ( x 1 7 2 9 + 1 ) ln x x 1 7 2 9 − 1 d x = ln ( Γ 2 ( 2 1 + 2 a 1 ) Γ ( 2 a 1 + 1 ) Γ ( 2 a 1 ) )
find a .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice solution. I used Feynman's trick and incomplete beta function
I am really impressed by your means of solving this problem,and I am privileged that you solved my problem.Thanks!!
Log in to reply
I am impressed how a 15-year-old can come up with a problem llike this. No coincidence that you chose the number 1729!
Impressive, genius. Or do you have one ring to solve 'm all...?
Log in to reply
I have a trick to solve it,means more generally, using the polygamma functions identity.
From here you can see that a=1729
Given the title, many people may have just guessed. I did little more, just an educated guess.
Playing around for low values of a in Wolfram Alpha with the function f ( a ) = ∫ 0 1 ( x a + 1 ) ln ( x ) x a − 1 d x I got f ( 1 ) = ln ( 2 π ) f ( 2 ) = 2 ln ( Γ ( 4 3 ) 2 Γ ( 4 5 ) ) = ln ( Γ 2 ( 4 3 ) 4 Γ 2 ( 4 5 ) ) ≈ 0 . 7 8 3 1 8 9 f ( 3 ) ≈ 1 . 0 3 5 4 1 f ( 4 ) = ln ( 8 ) − 2 ln ( Γ ( 8 5 ) ) + 2 ln ( Γ ( 8 9 ) ) = ln ( Γ 2 ( 8 5 ) 8 Γ 2 ( 8 9 ) ) ≈ 1 . 2 3 7 7 4
WA only gave a closed form for a = 1, 2 or 4, but (using identities like Γ ( x + 1 ) = x Γ ( x ) ) enough to suggest and numerically confirm a pattern: it seemed that ∫ 0 1 ( x a + 1 ) ln ( x ) x a − 1 d x = ln ( Γ 2 ( 2 1 + 2 a 1 ) Γ ( 2 a 1 + 1 ) Γ ( 2 a 1 ) )
Problem Loading...
Note Loading...
Set Loading...
The substitution x = e − y gives I ( a ) = ∫ 0 1 ( x a + 1 ) ln x x a − 1 d x = ∫ 0 ∞ ( 1 + e − a y ) y ( 1 − e − a y ) e − y d y = ∫ 0 ∞ 1 + e − a y e − y ∫ 0 a e − u y d u d y = ∫ 0 a ∫ 0 ∞ 1 + e − a y e − ( u + 1 ) y d y d u for any a > 0 . For any N ∈ N we define F N ( u , y ) = n = 0 ∑ 2 N − 1 ( − 1 ) n e − ( u + 1 + n a ) y 0 ≤ u ≤ a , y > 0 = 1 + e − a y e − ( u + 1 ) y ( 1 − e − 2 N a y ) then 0 ≤ 1 + e − a y e − ( u + 1 ) y − F N ( u , y ) = 1 + e − a y e − ( u + 1 + 2 N a ) y ≤ e − 2 N a y 0 ≤ u ≤ a , y > 0 so that ∣ ∣ ∣ ∣ ∫ 0 a ∫ 0 ∞ 1 + e − a y e − ( u + 1 ) y d y d u − ∫ 0 a ∫ 0 ∞ F N ( u , y ) d y d u ∣ ∣ ∣ ∣ ≤ 2 N 1 and hence I ( a ) = ∫ 0 a ∫ 0 ∞ 1 + e − a y e − ( u + 1 ) y d y d u = N → ∞ lim ∫ 0 a ∫ 0 ∞ F N ( u , y ) d y d u = N → ∞ lim n = 0 ∑ 2 N − 1 ( − 1 ) n ln ( 1 + n a 1 + ( n + 1 ) a ) = N → ∞ lim [ n = 0 ∑ N − 1 ( ln ( 1 + 2 n a 1 + ( 2 n + 1 ) a ) − ln ( 1 + ( 2 n + 1 ) a 1 + ( 2 n + 2 ) a ) ) ] = N → ∞ lim ln ( n = 0 ∏ N − 1 ( 1 + 2 n a ) ( 1 + ( 2 n + 2 ) a ) ( 1 + ( 2 n + 1 ) a ) 2 ) = N → ∞ lim ln ( n = 0 ∏ N − 1 ( n + 2 1 a − 1 ) ( n + 1 + 2 1 a − 1 ) ( n + 2 1 ( 1 + a − 1 ) ) 2 ) = N → ∞ lim ln ( G N ( 2 1 ( 1 + a − 1 ) ) 2 G N ( 2 1 a − 1 ) G N ( 1 + 2 1 a − 1 ) ) where G N ( z ) = z ( z + 1 ) ( z + 2 ) ⋯ ( z + N − 1 ) N z ( N − 1 ) ! It is well-known that N → ∞ lim G N ( z ) = Γ ( z ) and hence we deduce that I ( a ) = ln ( Γ ( 2 1 ( 1 + a − 1 ) ) 2 Γ ( 2 1 a − 1 ) Γ ( 1 + 2 1 a − 1 ) ) a > 0 In this case we have a = 1 7 2 9 .