It's too Obvious!

Calculus Level 3

Given that

0 1 x 1729 1 ( x 1729 + 1 ) ln x d x = ln ( Γ ( 1 2 a + 1 ) Γ ( 1 2 a ) Γ 2 ( 1 2 + 1 2 a ) ) \int_0^1 \frac{x^{1729}-1}{(x^{1729}+1)\ln x} dx = \ln \left(\frac{\Gamma(\frac{1}{2a}+1)\Gamma(\frac{1}{2a})}{\Gamma^2(\frac{1}{2}+\frac{1}{2a})}\right)

find a a .


The answer is 1729.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mark Hennings
Nov 14, 2020

The substitution x = e y x = e^{-y} gives I ( a ) = 0 1 x a 1 ( x a + 1 ) ln x d x = 0 ( 1 e a y ) e y ( 1 + e a y ) y d y = 0 e y 1 + e a y 0 a e u y d u d y = 0 a 0 e ( u + 1 ) y 1 + e a y d y d u I(a) \; = \; \int_0^1 \frac{x^a-1}{(x^a+1)\ln x}\,dx \; = \; \int_0^\infty \frac{(1 - e^{-ay})e^{-y}}{(1 + e^{-ay})y}\,dy \; =\; \int_0^\infty \frac{e^{-y}}{1 + e^{-ay}}\int_0^a e^{-uy}\,du\,dy \; = \; \int_0^a \int_0^\infty \frac{e^{-(u+1)y}}{1 + e^{-ay}}\,dy\,du for any a > 0 a > 0 . For any N N N \in \mathbb{N} we define F N ( u , y ) = n = 0 2 N 1 ( 1 ) n e ( u + 1 + n a ) y 0 u a , y > 0 = e ( u + 1 ) y ( 1 e 2 N a y ) 1 + e a y F_N(u,y) \; = \; \sum_{n=0}^{2N-1} (-1)^n e^{-(u+1+na)y} \hspace{2cm} 0 \le u \le a \,,\, y > 0 \; = \; \frac{e^{-(u+1)y}\big(1 - e^{-2Nay}\big)}{1 + e^{-ay}} then 0 e ( u + 1 ) y 1 + e a y F N ( u , y ) = e ( u + 1 + 2 N a ) y 1 + e a y e 2 N a y 0 u a , y > 0 0 \; \le \; \frac{e^{-(u+1)y}}{1 + e^{-ay}} - F_N(u,y) \; = \; \frac{e^{-(u+1+2Na)y}}{1 + e^{-ay}} \; \le \; e^{-2Nay} \hspace{2cm} 0 \le u \le a\,,\,y > 0 so that 0 a 0 e ( u + 1 ) y 1 + e a y d y d u 0 a 0 F N ( u , y ) d y d u 1 2 N \left| \int_0^a\int_0^\infty \frac{e^{-(u+1)y}}{1 + e^{-ay}} \,dy\,du - \int_0^a \int_0^\infty F_N(u,y)\,dy\,du\right| \; \le \; \frac{1}{2N} and hence I ( a ) = 0 a 0 e ( u + 1 ) y 1 + e a y d y d u = lim N 0 a 0 F N ( u , y ) d y d u = lim N n = 0 2 N 1 ( 1 ) n ln ( 1 + ( n + 1 ) a 1 + n a ) = lim N [ n = 0 N 1 ( ln ( 1 + ( 2 n + 1 ) a 1 + 2 n a ) ln ( 1 + ( 2 n + 2 ) a 1 + ( 2 n + 1 ) a ) ) ] = lim N ln ( n = 0 N 1 ( 1 + ( 2 n + 1 ) a ) 2 ( 1 + 2 n a ) ( 1 + ( 2 n + 2 ) a ) ) = lim N ln ( n = 0 N 1 ( n + 1 2 ( 1 + a 1 ) ) 2 ( n + 1 2 a 1 ) ( n + 1 + 1 2 a 1 ) ) = lim N ln ( G N ( 1 2 a 1 ) G N ( 1 + 1 2 a 1 ) G N ( 1 2 ( 1 + a 1 ) ) 2 ) \begin{aligned} I(a) & = \; \int_0^a\int_0^\infty \frac{e^{-(u+1)y}}{1 + e^{-ay}} \,dy\,du \;=\; \lim_{N \to \infty}\int_0^a \int_0^\infty F_N(u,y)\,dy\,du \; = \; \lim_{N \to \infty}\sum_{n=0}^{2N-1}(-1)^n \ln\left(\frac{1 + (n+1)a}{1 + na}\right) \\ & = \; \lim_{N \to \infty} \left[\sum_{n=0}^{N-1} \left(\ln\left(\frac{1 + (2n+1)a}{1 + 2na}\right) - \ln\left(\frac{1 + (2n+2)a}{1 + (2n+1)a}\right)\right)\right] \\ & = \; \lim_{N \to \infty}\ln\left(\prod_{n=0}^{N-1} \frac{\big(1 + (2n+1)a\big)^2}{\big(1 + 2na\big)\big(1 + (2n+2)a\big)}\right) \; = \; \lim_{N \to \infty}\ln\left(\prod_{n=0}^{N-1} \frac{\big(n+\frac12(1+a^{-1})\big)^2}{\big(n+\frac12a^{-1}\big)\big(n+1+\frac12a^{-1}\big)}\right) \\ & = \; \lim_{N \to \infty}\ln\left(\frac{G_N\big(\frac12a^{-1}\big)G_N\big(1 + \frac12a^{-1}\big)}{G_N\big(\frac12(1+a^{-1})\big)^2}\right) \end{aligned} where G N ( z ) = N z ( N 1 ) ! z ( z + 1 ) ( z + 2 ) ( z + N 1 ) G_N(z) \; = \; \frac{N^z (N-1)!}{z(z+1)(z+2)\cdots (z+N-1)} It is well-known that lim N G N ( z ) = Γ ( z ) \lim_{N \to \infty}G_N(z) \; = \; \Gamma(z) and hence we deduce that I ( a ) = ln ( Γ ( 1 2 a 1 ) Γ ( 1 + 1 2 a 1 ) Γ ( 1 2 ( 1 + a 1 ) ) 2 ) a > 0 I(a) \; = \; \ln\left(\frac{\Gamma\big(\frac12a^{-1}\big)\Gamma\big(1 + \frac12a^{-1}\big)}{\Gamma\big(\frac12(1+a^{-1})\big)^2}\right) \hspace{2cm} a > 0 In this case we have a = 1729 a = \boxed{1729} .

Nice solution. I used Feynman's trick and incomplete beta function

José Antonio Fuentes - 6 months, 3 weeks ago

I am really impressed by your means of solving this problem,and I am privileged that you solved my problem.Thanks!!

Yoihenba Laishram - 6 months, 1 week ago

Log in to reply

I am impressed how a 15-year-old can come up with a problem llike this. No coincidence that you chose the number 1729!

K T - 6 months ago

Impressive, genius. Or do you have one ring to solve 'm all...?

K T - 6 months ago

Log in to reply

I have a trick to solve it,means more generally, using the polygamma functions identity.

Yoihenba Laishram - 6 months ago

From here you can see that a=1729

K T
Dec 8, 2020

Given the title, many people may have just guessed. I did little more, just an educated guess.

Playing around for low values of a a in Wolfram Alpha with the function f ( a ) = 0 1 x a 1 ( x a + 1 ) ln ( x ) d x f(a)=\int_0^1 \frac{x^a-1}{(x^a+1)\ln(x)}dx I got f ( 1 ) = ln ( π 2 ) f(1)=\ln(\frac{\pi}{2}) f ( 2 ) = 2 ln ( 2 Γ ( 5 4 ) Γ ( 3 4 ) ) = ln ( 4 Γ 2 ( 5 4 ) Γ 2 ( 3 4 ) ) 0.783189 f(2)=2\ln \left(\frac{2\Gamma(\frac{5}{4})}{\Gamma(\frac{3}{4})}\right)=\ln\left(\frac{4\Gamma^2(\frac{5}{4})}{\Gamma^2(\frac{3}{4})}\right)\approx 0.783189 f ( 3 ) 1.03541 f(3)\approx 1.03541 f ( 4 ) = ln ( 8 ) 2 ln ( Γ ( 5 8 ) ) + 2 ln ( Γ ( 9 8 ) ) = ln ( 8 Γ 2 ( 9 8 ) Γ 2 ( 5 8 ) ) 1.23774 f(4)=\ln(8)-2\ln(\Gamma(\frac{5}{8}))+2\ln(\Gamma(\frac{9}{8}))=\ln \left(\frac{8 \Gamma^2(\frac{9}{8})}{\Gamma^2(\frac{5}{8})} \right) \approx 1.23774

WA only gave a closed form for a = 1, 2 or 4, but (using identities like Γ ( x + 1 ) = x Γ ( x ) \Gamma(x+1)=x\Gamma(x) ) enough to suggest and numerically confirm a pattern: it seemed that 0 1 x a 1 ( x a + 1 ) ln ( x ) d x = ln ( Γ ( 1 2 a + 1 ) Γ ( 1 2 a ) Γ 2 ( 1 2 + 1 2 a ) ) \int_0^1 \frac{x^a-1}{(x^a+1)\ln(x)}dx =\ln \left( \frac{\Gamma(\frac{1}{2a}+1)\Gamma(\frac{1}{2a})}{\Gamma^2(\frac{1}{2}+\frac{1}{2a})}\right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...